File size: 37,383 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
import copy
import logging
import os
import sys
from typing import List

import gymnasium as gym
import imageio
import matplotlib.font_manager as fm
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from ding.envs import BaseEnvTimestep
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from easydict import EasyDict
from gymnasium import spaces
from gymnasium.utils import seeding


@ENV_REGISTRY.register('game_2048')
class Game2048Env(gym.Env):
    """
    Overview:
        The Game2048Env is a gym environment implementation of the 2048 game. The goal of the game is to slide numbered tiles
        on a grid to combine them and create a tile with the number 2048 (or larger). The environment provides an interface to interact with
        the game and receive observations, rewards, and game status information.

    Interfaces:
      - reset(init_board=None, add_random_tile_flag=True):
          Resets the game board and starts a new episode. It returns the initial observation of the game.
      - step(action):
          Advances the game by one step based on the provided action. It returns the new observation, reward, game status,
          and additional information.
      - render(mode='human'):
          Renders the current state of the game for visualization purposes.
    MDP Definition:
      - Observation Space:
          The observation space is a 4x4 grid representing the game board. Each cell in the grid can contain a number from
          0 to 2048. The observation can be in different formats based on the 'obs_type' parameter in the environment configuration.
          - If 'obs_type' is set to 'encode_observation' (default):
              The observation is a 3D numpy array of shape (4, 4, 16). Each cell in the array is represented as a one-hot vector
              encoding the value of the tile in that cell. The one-hot vector has a length of 16, representing the possible tile
              values from 0 to 2048. The first element in the one-hot vector corresponds to an empty cell (0 value).
          - If 'obs_type' is set to 'dict_encoded_board':
              The observation is a dictionary with the following keys:
                  - 'observation': A 3D numpy array representing the game board as described above.
                  - 'action_mask': A binary mask representing the legal actions that can be taken in the current state.
                  - 'to_play': A placeholder value (-1) indicating the current player (not applicable in this game).
                  - 'chance': A placeholder value representing the chance outcome (not applicable in this game).
          - If 'obs_type' is set to 'raw_board':
              The observation is the raw game board as a 2D numpy array of shape (4, 4).
      - Action Space:
          The action space is a discrete space with 4 possible actions:
              - 0: Move Up
              - 1: Move Right
              - 2: Move Down
              - 3: Move Left
      - Reward:
          The reward depends on the 'reward_type' parameter in the environment configuration.
          - If 'reward_type' is set to 'raw':
              The reward is a floating-point number representing the immediate reward obtained from the last action.
          - If 'reward_type' is set to 'merged_tiles_plus_log_max_tile_num':
              The reward is a floating-point number representing the number of merged tiles in the current step.
              If the maximum tile number on the board after the step is greater than the previous maximum tile number,
              the reward is further adjusted by adding the logarithm of the new maximum tile number multiplied by 0.1.
              The reward is calculated as follows: reward = num_of_merged_tiles + (log2(new_max_tile_num) * 0.1)
              If the new maximum tile number is the same as the previous maximum tile number, the reward does not
              include the second term. Note: This reward type requires 'reward_normalize' to be set to False.
      - Done:
          The game ends when one of the following conditions is met:
              - The maximum tile number (configured by 'max_tile') is reached.
              - There are no legal moves left.
              - The number of steps in the episode exceeds the maximum episode steps (configured by 'max_episode_steps').
      - Additional Information:
          The 'info' dictionary returned by the 'step' method contains additional information about the current state.
          The following keys are included in the dictionary:
              - 'raw_reward': The raw reward obtained from the last action.
              - 'current_max_tile_num': The current maximum tile number on the board.
      - Rendering:
          The render method provides a way to visually represent the current state of the game. It offers four distinct rendering modes:
            When set to None, the game state is not rendered.
            In 'state_realtime_mode', the game state is illustrated in a text-based format directly in the console.
            The 'image_realtime_mode' displays the game as an RGB image in real-time.
            With 'image_savefile_mode', the game is rendered as an RGB image but not displayed in real-time. Instead, the image is saved to a designated file.
            Please note that the default rendering mode is set to None.
      """

    # The default_config for game 2048 env.
    config = dict(
        # (str) The name of the environment registered in the environment registry.
        env_name="game_2048",
        # (str) The render mode. Options are 'None', 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
        # If None, then the game will not be rendered.
        render_mode=None,
        # (str) The format in which to save the replay. 'gif' is a popular choice.
        replay_format='gif',
        # (str) A suffix for the replay file name to distinguish it from other files.
        replay_name_suffix='eval',
        # (str or None) The directory in which to save the replay file. If None, the file is saved in the current directory.
        replay_path=None,
        # (bool) Whether to scale the actions. If True, actions are divided by the action space size.
        act_scale=True,
        # (bool) Whether to use the 'channel last' format for the observation space.
        # If False, 'channel first' format is used.
        channel_last=True,
        # (str) The type of observation to use. Options are 'raw_board', 'raw_encoded_board', and 'dict_encoded_board'.
        obs_type='dict_encoded_board',
        # (bool) Whether to normalize rewards. If True, rewards are divided by the maximum possible reward.
        reward_normalize=False,
        # (float) The factor to scale rewards by when reward normalization is used.
        reward_norm_scale=100,
        # (str) The type of reward to use. 'raw' means the raw game score. 'merged_tiles_plus_log_max_tile_num' is an alternative.
        reward_type='raw',
        # (int) The maximum tile number in the game. A game is won when this tile appears. 2**11=2048, 2**16=65536
        max_tile=int(2 ** 16),
        # (int) The number of steps to delay rewards by. If > 0, the agent only receives a reward every this many steps.
        delay_reward_step=0,
        # (float) The probability that a random agent is used instead of the learning agent.
        prob_random_agent=0.,
        # (int) The maximum number of steps in an episode.
        max_episode_steps=int(1e6),
        # (bool) Whether to collect data during the game.
        is_collect=True,
        # (bool) Whether to ignore legal actions. If True, the agent can take any action, even if it's not legal.
        ignore_legal_actions=True,
        # (bool) Whether to flatten the observation space. If True, the observation space is a 1D array instead of a 2D grid.
        need_flatten=False,
        # (int) The number of possible tiles that can appear after each move.
        num_of_possible_chance_tile=2,
        # (numpy array) The possible tiles that can appear after each move.
        possible_tiles=np.array([2, 4]),
        # (numpy array) The probabilities corresponding to each possible tile.
        tile_probabilities=np.array([0.9, 0.1]),
    )

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._init_flag = False
        self._env_name = cfg.env_name
        self.replay_format = cfg.replay_format
        self.replay_name_suffix = cfg.replay_name_suffix
        self.replay_path = cfg.replay_path
        self.render_mode = cfg.render_mode

        self.channel_last = cfg.channel_last
        self.obs_type = cfg.obs_type
        self.reward_type = cfg.reward_type
        self.reward_normalize = cfg.reward_normalize
        self.reward_norm_scale = cfg.reward_norm_scale
        assert self.reward_type in ['raw', 'merged_tiles_plus_log_max_tile_num']
        assert self.reward_type == 'raw' or (
                self.reward_type == 'merged_tiles_plus_log_max_tile_num' and self.reward_normalize is False)
        self.max_tile = cfg.max_tile
        # Define the maximum tile that will end the game (e.g. 2048). None means no limit.
        # This does not affect the state returned.
        assert self.max_tile is None or isinstance(self.max_tile, int)

        self.max_episode_steps = cfg.max_episode_steps
        self.is_collect = cfg.is_collect
        self.ignore_legal_actions = cfg.ignore_legal_actions
        self.need_flatten = cfg.need_flatten
        self.chance = 0
        self.chance_space_size = 16  # 32 for 2 and 4, 16 for 2
        self.max_tile_num = 0
        self.size = 4
        self.w = self.size
        self.h = self.size
        self.squares = self.size * self.size
        self.episode_return = 0
        # Members for gym implementation:
        self._action_space = spaces.Discrete(4)
        self._observation_space = spaces.Box(0, 1, (self.w, self.h, self.squares), dtype=int)
        self._reward_range = (0., self.max_tile)

        # for render
        self.grid_size = 70
        # Initialise the random seed of the gym environment.
        self.seed()
        self.frames = []
        self.num_of_possible_chance_tile = cfg.num_of_possible_chance_tile
        self.possible_tiles = cfg.possible_tiles
        self.tile_probabilities = cfg.tile_probabilities
        if self.num_of_possible_chance_tile > 2:
            self.possible_tiles = np.array([2 ** (i + 1) for i in range(self.num_of_possible_chance_tile)])
            self.tile_probabilities = np.array(
                [1 / self.num_of_possible_chance_tile for _ in range(self.num_of_possible_chance_tile)])
            assert self.possible_tiles.shape[0] == self.tile_probabilities.shape[0]
            assert np.sum(self.tile_probabilities) == 1

    def reset(self, init_board=None, add_random_tile_flag=True):
        """Reset the game board-matrix and add 2 tiles."""
        self.episode_length = 0
        self.add_random_tile_flag = add_random_tile_flag
        if init_board is not None:
            self.board = copy.deepcopy(init_board)
        else:
            self.board = np.zeros((self.h, self.w), np.int32)
            # Add two tiles at the start of the game
            for _ in range(2):
                if self.num_of_possible_chance_tile > 2:
                    self.add_random_tile(self.possible_tiles, self.tile_probabilities)
                elif self.num_of_possible_chance_tile == 2:
                    self.add_random_2_4_tile()

        self.episode_return = 0
        self._final_eval_reward = 0.0
        self.should_done = False
        # Create a mask for legal actions
        action_mask = np.zeros(4, 'int8')
        action_mask[self.legal_actions] = 1

        # Encode the board, ensure correct datatype and shape
        observation = encode_board(self.board).astype(np.float32)
        assert observation.shape == (4, 4, 16)

        # Reshape or transpose the observation as per the requirement
        if not self.channel_last:
            # move channel dim to fist axis
            # (W, H, C) -> (C, W, H)
            # e.g. (4, 4, 16) -> (16, 4, 4)
            observation = np.transpose(observation, [2, 0, 1])
        if self.need_flatten:
            observation = observation.reshape(-1)

        # Based on the observation type, create the appropriate observation object
        if self.obs_type == 'dict_encoded_board':
            observation = {
                'observation': observation,
                'action_mask': action_mask,
                'to_play': -1,
                'chance': self.chance
            }
        elif self.obs_type == 'raw_board':
            observation = self.board
        elif self.obs_type == 'raw_encoded_board':
            observation = observation
        else:
            raise NotImplementedError

        # Render the beginning state of the game.
        if self.render_mode is not None:
            self.render(self.render_mode)

        return observation

    def step(self, action):
        """
        Overview:
            Perform one step of the game. This involves making a move, adding a new tile, and updating the game state.
            New tile could be added randomly or from the tile probabilities.
            The rewards are calculated based on the game configuration ('merged_tiles_plus_log_max_tile_num' or 'raw').
            The observations are also returned based on the game configuration ('raw_board', 'raw_encoded_board' or 'dict_encoded_board').
        Arguments:
            - action (:obj:`int`): The action to be performed.
        Returns:
            - BaseEnvTimestep: Contains the new state observation, reward, and other game information.
        """

        # Increment the total episode length
        self.episode_length += 1

        # Check if the action is legal, otherwise choose a random legal action
        if action not in self.legal_actions:
            logging.warning(
                f"Illegal action: {action}. Legal actions: {self.legal_actions}. "
                "Choosing a random action from legal actions."
            )
            action = np.random.choice(self.legal_actions)

        # Calculate the reward differently based on the reward type
        if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
            empty_num1 = len(self.get_empty_location())
        raw_reward = float(self.move(action))
        if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
            empty_num2 = len(self.get_empty_location())
            num_of_merged_tiles = float(empty_num2 - empty_num1)
            reward_merged_tiles_plus_log_max_tile_num = num_of_merged_tiles
            max_tile_num = self.highest()
            if max_tile_num > self.max_tile_num:
                reward_merged_tiles_plus_log_max_tile_num += np.log2(max_tile_num) * 0.1
                self.max_tile_num = max_tile_num

        # Update total reward and add new tile
        self.episode_return += raw_reward
        assert raw_reward <= 2 ** (self.w * self.h)
        if self.add_random_tile_flag:
            if self.num_of_possible_chance_tile > 2:
                self.add_random_tile(self.possible_tiles, self.tile_probabilities)
            elif self.num_of_possible_chance_tile == 2:
                self.add_random_2_4_tile()

        # Check if the game has ended
        done = self.is_done()

        # Convert rewards to float
        if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
            reward_merged_tiles_plus_log_max_tile_num = float(reward_merged_tiles_plus_log_max_tile_num)
        elif self.reward_type == 'raw':
            raw_reward = float(raw_reward)

        # End the game if the maximum steps have been reached
        if self.episode_length >= self.max_episode_steps:
            done = True

        # Prepare the game state observation
        observation = encode_board(self.board)
        observation = observation.astype(np.float32)
        assert observation.shape == (4, 4, 16)
        if not self.channel_last:
            observation = np.transpose(observation, [2, 0, 1])
        if self.need_flatten:
            observation = observation.reshape(-1)
        action_mask = np.zeros(4, 'int8')
        action_mask[self.legal_actions] = 1

        # Return the observation based on the observation type
        if self.obs_type == 'dict_encoded_board':
            observation = {'observation': observation, 'action_mask': action_mask, 'to_play': -1, 'chance': self.chance}
        elif self.obs_type == 'raw_board':
            observation = self.board
        elif self.obs_type == 'raw_encoded_board':
            observation = observation
        else:
            raise NotImplementedError

        # Normalize the reward if necessary
        if self.reward_normalize:
            reward_normalize = raw_reward / self.reward_norm_scale
            reward = reward_normalize
        else:
            reward = raw_reward

        self._final_eval_reward += raw_reward

        # Convert the reward to ndarray
        if self.reward_type == 'merged_tiles_plus_log_max_tile_num':
            reward = to_ndarray([reward_merged_tiles_plus_log_max_tile_num]).astype(np.float32)
        elif self.reward_type == 'raw':
            reward = to_ndarray([reward]).astype(np.float32)

        # Prepare information to return
        info = {"raw_reward": raw_reward, "current_max_tile_num": self.highest()}

        # Render the new step.
        if self.render_mode is not None:
            self.render(self.render_mode)

        # If the game has ended, save additional information and the replay if necessary
        if done:
            info['eval_episode_return'] = self._final_eval_reward
            if self.render_mode == 'image_savefile_mode':
                self.save_render_output(replay_name_suffix=self.replay_name_suffix, replay_path=self.replay_path,
                                        format=self.replay_format)

        return BaseEnvTimestep(observation, reward, done, info)

    def move(self, direction, trial=False):
        """
        Overview:
            Perform one move in the game. The game board can be shifted in one of four directions: up (0), right (1), down (2), or left (3).
            This method manages the shifting process and combines similar adjacent elements. It also returns the reward generated from the move.
        Arguments:
            - direction (:obj:`int`): The direction of the move.
            - trial (:obj:`bool`): If true, this move is only simulated and does not change the actual game state.
        """
        # TODO(pu): different transition dynamics
        # Logging the direction of the move if not a trial
        if not trial:
            logging.debug(["Up", "Right", "Down", "Left"][int(direction)])

        move_reward = 0
        # Calculate merge direction of the shift (0 for up/left, 1 for down/right) based on the input direction
        merge_direction = 0 if direction in [0, 3] else 1

        # Construct a range for extracting row/column into a list
        range_x = list(range(self.w))
        range_y = list(range(self.h))

        # If direction is up or down, process the board column by column
        if direction in [0, 2]:
            for y in range(self.h):
                old_col = [self.board[x, y] for x in range_x]
                new_col, reward = self.shift(old_col, merge_direction)
                move_reward += reward
                if old_col != new_col and not trial:  # Update the board if it's not a trial move
                    for x in range_x:
                        self.board[x, y] = new_col[x]
        # If direction is left or right, process the board row by row
        else:
            for x in range(self.w):
                old_row = [self.board[x, y] for y in range_y]
                new_row, reward = self.shift(old_row, merge_direction)
                move_reward += reward
                if old_row != new_row and not trial:  # Update the board if it's not a trial move
                    for y in range_y:
                        self.board[x, y] = new_row[y]

        return move_reward

    def shift(self, row, merge_direction):
        """
        Overview:
            This method shifts the elements in a given row or column of the 2048 board in a specified direction.
            It performs three main operations: removal of zeroes, combination of similar elements, and filling up the
            remaining spaces with zeroes. The direction of shift can be either left (0) or right (1).
        Arguments:
            - row: A list of integers representing a row or a column in the 2048 board.
            - merge_direction: An integer that dictates the direction of merge. It can be either 0 or 1.
                - 0: The elements in the 'row' will be merged towards left/up.
                - 1: The elements in the 'row' will be merged towards right/down.
        Returns:
            - combined_row: A list of integers of the same length as 'row' after shifting and merging.
            - move_reward: The reward gained from combining similar elements in 'row'. It is the sum of all new
                combinations.
        Note:
            This method assumes that the input 'row' is a list of integers and 'merge_direction' is either 0 or 1.
        """

        # Remove the zero elements from the row and store it in a new list.
        non_zero_row = [i for i in row if i != 0]

        # Determine the start, stop, and step values based on the direction of shift.
        # If the direction is left (0), we start at the first element and move forwards.
        # If the direction is right (1), we start at the last element and move backwards.
        start, stop, step = (0, len(non_zero_row), 1) if merge_direction == 0 else (len(non_zero_row) - 1, -1, -1)

        # Call the combine function to merge the adjacent, same elements in the row.
        combined_row, move_reward = self.combine(non_zero_row, start, stop, step)

        if merge_direction == 1:
            # If direction is 'right'/'down', reverse the row
            combined_row = combined_row[::-1]

        # Fill up the remaining spaces in the row with 0, if any.
        if merge_direction == 0:
            combined_row += [0] * (len(row) - len(combined_row))
        elif merge_direction == 1:
            combined_row = [0] * (len(row) - len(combined_row)) + combined_row

        return combined_row, move_reward

    def combine(self, row, start, stop, step):
        """
        Overview:
            Combine similar adjacent elements in the row, starting from the specified start index,
            ending at the stop index, and moving in the direction indicated by the step. The function
            also calculates the reward as the sum of all combined elements.
        """

        # Initialize the reward for this move as 0.
        move_reward = 0

        # Initialize the list to store the row after combining same elements.
        combined_row = []

        # Initialize a flag to indicate whether the next element should be skipped.
        skip_next = False

        # Iterate over the elements in the row based on the start, stop, and step values.
        for i in range(start, stop, step):
            # If the next element should be skipped, reset the flag and continue to the next iteration.
            if skip_next:
                skip_next = False
                continue

            # If the current element and the next element are the same, combine them.
            if i + step != stop and row[i] == row[i + step]:
                combined_row.append(row[i] * 2)
                move_reward += row[i] * 2
                # Set the flag to skip the next element in the next iteration.
                skip_next = True
            else:
                # If the current element and the next element are not the same, just append the current element to the result.
                combined_row.append(row[i])

        return combined_row, move_reward

    @property
    def legal_actions(self):
        """
        Overview:
            Return the legal actions for the current state. A move is considered legal if it changes the state of the board.
        """

        if self.ignore_legal_actions:
            return [0, 1, 2, 3]

        legal_actions = []

        # For each direction, simulate a move. If the move changes the board, add the direction to the list of legal actions
        for direction in range(4):
            # Calculate merge direction of the shift (0 for up/left, 1 for down/right) based on the input direction
            merge_direction = 0 if direction in [0, 3] else 1

            range_x = list(range(self.w))
            range_y = list(range(self.h))

            if direction % 2 == 0:
                for y in range(self.h):
                    old_col = [self.board[x, y] for x in range_x]
                    new_col, _ = self.shift(old_col, merge_direction)
                    if old_col != new_col:
                        legal_actions.append(direction)
                        break  # As soon as we know the move is legal, we can stop checking
            else:
                for x in range(self.w):
                    old_row = [self.board[x, y] for y in range_y]
                    new_row, _ = self.shift(old_row, merge_direction)
                    if old_row != new_row:
                        legal_actions.append(direction)
                        break  # As soon as we know the move is legal, we can stop checking

        return legal_actions

    # Implementation of game logic for 2048
    def add_random_2_4_tile(self):
        """Add a tile with value 2 or 4 with different probabilities."""
        possible_tiles = np.array([2, 4])
        tile_probabilities = np.array([0.9, 0.1])
        tile_val = self.np_random.choice(possible_tiles, 1, p=tile_probabilities)[0]
        empty_location = self.get_empty_location()
        if empty_location.shape[0] == 0:
            self.should_done = True
            return
        empty_idx = self.np_random.choice(empty_location.shape[0])
        empty = empty_location[empty_idx]
        logging.debug("Adding %s at %s", tile_val, (empty[0], empty[1]))

        # set the chance outcome
        if self.chance_space_size == 16:
            self.chance = 4 * empty[0] + empty[1]
        elif self.chance_space_size == 32:
            if tile_val == 2:
                self.chance = 4 * empty[0] + empty[1]
            elif tile_val == 4:
                self.chance = 16 + 4 * empty[0] + empty[1]

        self.board[empty[0], empty[1]] = tile_val

    def add_random_tile(self, possible_tiles: np.array = np.array([2, 4]),
                        tile_probabilities: np.array = np.array([0.9, 0.1])):
        """Add a tile with a value from possible_tiles array according to given probabilities."""
        if len(possible_tiles) != len(tile_probabilities):
            raise ValueError("Length of possible_tiles and tile_probabilities must be the same")
        if np.sum(tile_probabilities) != 1:
            raise ValueError("Sum of tile_probabilities must be 1")

        tile_val = self.np_random.choice(possible_tiles, 1, p=tile_probabilities)[0]
        tile_idx = np.where(possible_tiles == tile_val)[0][0]  # get the index of the tile value
        empty_location = self.get_empty_location()
        if empty_location.shape[0] == 0:
            self.should_done = True
            return
        empty_idx = self.np_random.choice(empty_location.shape[0])
        empty = empty_location[empty_idx]
        logging.debug("Adding %s at %s", tile_val, (empty[0], empty[1]))

        # set the chance outcome
        self.chance_space_size = len(possible_tiles) * 16  # assuming a 4x4 board
        self.chance = tile_idx * 16 + 4 * empty[0] + empty[1]

        self.board[empty[0], empty[1]] = tile_val

    def get_empty_location(self):
        """Return a 2d numpy array with the location of empty squares."""
        return np.argwhere(self.board == 0)

    def highest(self):
        """Report the highest tile on the board."""
        return np.max(self.board)

    def is_done(self):
        """Has the game ended. Game ends if there is a tile equal to the limit
           or there are no legal moves. If there are empty spaces then there
           must be legal moves."""

        if self.max_tile is not None and self.highest() == self.max_tile:
            return True
        elif len(self.legal_actions) == 0:
            # the agent don't have legal_actions to move, so the episode is done
            return True
        elif self.should_done:
            return True
        else:
            return False

    def get_board(self):
        """Get the whole board-matrix, useful for testing."""
        return self.board

    def set_board(self, new_board):
        """Set the whole board-matrix, useful for testing."""
        self.board = new_board

    def seed(self, seed=None, seed1=None):
        """Set the random seed for the gym environment."""
        self.np_random, seed = seeding.np_random(seed)
        return [seed]

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        if isinstance(random_action, np.ndarray):
            pass
        elif isinstance(random_action, int):
            random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    def human_to_action(self):
        """
        Overview:
            For multiplayer games, ask the user for a legal action
            and return the corresponding action number.
        Returns:
            An integer from the action space.
        """
        # print(self.board)
        while True:
            try:
                action = int(
                    input(
                        f"Enter the action (0(Up), 1(Right), 2(Down), or 3(Left)) to play: "
                    )
                )
                if action in self.legal_actions:
                    break
                else:
                    print("Wrong input, try again")
            except KeyboardInterrupt:
                print("exit")
                sys.exit(0)
        return action

    def render(self, mode: str = None):
        """
        Overview:
            Renders the 2048 game environment.
        Arguments:
            - mode (:obj:`str`): The rendering mode. Options are None, 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
                When set to None, the game state is not rendered.
                In 'state_realtime_mode', the game state is illustrated in a text-based format directly in the console.
                The 'image_realtime_mode' displays the game as an RGB image in real-time.
                With 'image_savefile_mode', the game is rendered as an RGB image but not displayed in real-time. Instead, the image is saved to a designated file.
                Please note that the default rendering mode is set to None.
        """
        if mode == 'state_realtime_mode':
            s = 'Current Return: {}, '.format(self.episode_return)
            s += 'Current Highest Tile number: {}\n'.format(self.highest())
            npa = np.array(self.board)
            grid = npa.reshape((self.size, self.size))
            s += "{}\n".format(grid)
            print(s)
        else:
            # In other two modes, draw the board.
            grey = (128, 128, 128)
            grid_size = self.grid_size

            # Render with Pillow
            pil_board = Image.new("RGB", (grid_size * 4, grid_size * 4))
            draw = ImageDraw.Draw(pil_board)
            draw.rectangle([0, 0, 4 * grid_size, 4 * grid_size], grey)
            fnt_path = fm.findfont(fm.FontProperties(family='DejaVu Sans'))
            fnt = ImageFont.truetype(fnt_path, 30)

            for y in range(4):
                for x in range(4):
                    o = self.board[y, x]
                    if o:
                        self.draw_tile(draw, x, y, o, fnt)

            # Instead of returning the image, we display it using pyplot
            if mode == 'image_realtime_mode':
                plt.imshow(np.asarray(pil_board))
                plt.draw()
                # plt.pause(0.001)
            elif mode == 'image_savefile_mode':
                # Append the frame to frames for gif
                self.frames.append(np.asarray(pil_board))

    def draw_tile(self, draw, x, y, o, fnt):
        grid_size = self.grid_size
        white = (255, 255, 255)
        tile_colour_map = {
            0: (204, 192, 179),
            2: (238, 228, 218),
            4: (237, 224, 200),
            8: (242, 177, 121),
            16: (245, 149, 99),
            32: (246, 124, 95),
            64: (246, 94, 59),
            128: (237, 207, 114),
            256: (237, 204, 97),
            512: (237, 200, 80),
            1024: (237, 197, 63),
            2048: (237, 194, 46),
            4096: (237, 194, 46),
            8192: (237, 194, 46),
            16384: (237, 194, 46),
        }
        if o:
            draw.rectangle([x * grid_size, y * grid_size, (x + 1) * grid_size, (y + 1) * grid_size],
                           tile_colour_map[o])
            bbox = draw.textbbox((x, y), str(o), font=fnt)
            text_x_size, text_y_size = bbox[2] - bbox[0], bbox[3] - bbox[1]
            draw.text((x * grid_size + (grid_size - text_x_size) // 2,
                       y * grid_size + (grid_size - text_y_size) // 2), str(o), font=fnt, fill=white)

    def save_render_output(self, replay_name_suffix: str = '', replay_path=None, format='gif'):
        # At the end of the episode, save the frames to a gif or mp4 file
        if replay_path is None:
            filename = f'2048_{replay_name_suffix}.{format}'
        else:
            if not os.path.exists(replay_path):
                os.makedirs(replay_path)
            filename = replay_path + f'/2048_{replay_name_suffix}.{format}'

        if format == 'gif':
            imageio.mimsave(filename, self.frames, 'GIF')
        elif format == 'mp4':
            imageio.mimsave(filename, self.frames, fps=30, codec='mpeg4')

        else:
            raise ValueError("Unsupported format: {}".format(format))

        logging.info("Saved output to {}".format(filename))
        self.frames = []

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_range

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_env_num = cfg.pop('collector_env_num')
        cfg = copy.deepcopy(cfg)
        # when in collect phase, sometimes we need to normalize the reward
        # reward_normalize is determined by the config.
        cfg.is_collect = True
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_env_num = cfg.pop('evaluator_env_num')
        cfg = copy.deepcopy(cfg)
        # when in evaluate phase, we don't need to normalize the reward.
        cfg.reward_normalize = False
        cfg.is_collect = False
        return [cfg for _ in range(evaluator_env_num)]

    def __repr__(self) -> str:
        return "LightZero game 2048 Env."


def encode_board(flat_board, num_of_template_tiles=16):
    """
    Overview:
        This function converts a [4, 4] raw game board into a [4, 4, num_of_template_tiles] one-hot encoded board.
    Arguments:
        - flat_board (:obj:`np.ndarray`): The raw game board, expected to be a 2D numpy array.
        - num_of_template_tiles (:obj:`int`): The number of unique tiles to consider in the encoding,
                                               default value is 16.
    Returns:
        - one_hot_board (:obj:`np.ndarray`): The one-hot encoded game board.
    """
    # Generate a sequence of powers of 2, corresponding to the unique tile values.
    # In the game, tile values are powers of 2. So, each unique tile is represented by 2 raised to some power.
    # The first tile is considered as 0 (empty tile).
    tile_values = 2 ** np.arange(num_of_template_tiles, dtype=int)
    tile_values[0] = 0  # The first tile represents an empty slot, so set its value to 0.

    # Create a 3D array from the 2D input board by repeating it along a new axis.
    # This creates a 'layered' view of the board, where each layer corresponds to one unique tile value.
    layered_board = np.repeat(flat_board[:, :, np.newaxis], num_of_template_tiles, axis=-1)

    # Perform the one-hot encoding:
    # For each layer of the 'layered_board', mark the positions where the tile value in the 'flat_board'
    # matches the corresponding value in 'tile_values'. If a match is found, mark it as 1 (True), else 0 (False).
    one_hot_board = (layered_board == tile_values).astype(int)

    return one_hot_board