File size: 24,372 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import os
import os.path as osp
import yaml
import json
import shutil
import sys
import time
import tempfile
import subprocess
import datetime
from importlib import import_module
from typing import Optional, Tuple
from easydict import EasyDict
from copy import deepcopy

from ding.utils import deep_merge_dicts, get_rank
from ding.envs import get_env_cls, get_env_manager_cls, BaseEnvManager
from ding.policy import get_policy_cls
from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, Coordinator, \
    AdvancedReplayBuffer, get_parallel_commander_cls, get_parallel_collector_cls, get_buffer_cls, \
    get_serial_collector_cls, MetricSerialEvaluator, BattleInteractionSerialEvaluator
from ding.reward_model import get_reward_model_cls
from ding.world_model import get_world_model_cls
from .utils import parallel_transform, parallel_transform_slurm, parallel_transform_k8s, save_config_formatted


class Config(object):
    r"""
    Overview:
        Base class for config.
    Interface:
        __init__, file_to_dict
    Property:
        cfg_dict
    """

    def __init__(
            self,
            cfg_dict: Optional[dict] = None,
            cfg_text: Optional[str] = None,
            filename: Optional[str] = None
    ) -> None:
        """
        Overview:
            Init method. Create config including dict type config and text type config.
        Arguments:
            - cfg_dict (:obj:`Optional[dict]`): dict type config
            - cfg_text (:obj:`Optional[str]`): text type config
            - filename (:obj:`Optional[str]`): config file name
        """
        if cfg_dict is None:
            cfg_dict = {}
        if not isinstance(cfg_dict, dict):
            raise TypeError("invalid type for cfg_dict: {}".format(type(cfg_dict)))
        self._cfg_dict = cfg_dict
        if cfg_text:
            text = cfg_text
        elif filename:
            with open(filename, 'r') as f:
                text = f.read()
        else:
            text = '.'
        self._text = text
        self._filename = filename

    @staticmethod
    def file_to_dict(filename: str) -> 'Config':  # noqa
        """
        Overview:
            Read config file and create config.
        Arguments:
            - filename (:obj:`Optional[str]`): config file name.
        Returns:
            - cfg_dict (:obj:`Config`): config class
        """
        cfg_dict, cfg_text = Config._file_to_dict(filename)
        return Config(cfg_dict, cfg_text, filename=filename)

    @staticmethod
    def _file_to_dict(filename: str) -> Tuple[dict, str]:
        """
        Overview:
            Read config file and convert the config file to dict type config and text type config.
        Arguments:
            - filename (:obj:`Optional[str]`): config file name.
        Returns:
            - cfg_dict (:obj:`Optional[dict]`): dict type config
            - cfg_text (:obj:`Optional[str]`): text type config
        """
        filename = osp.abspath(osp.expanduser(filename))
        # TODO check exist
        # TODO check suffix
        ext_name = osp.splitext(filename)[-1]
        with tempfile.TemporaryDirectory() as temp_config_dir:
            temp_config_file = tempfile.NamedTemporaryFile(dir=temp_config_dir, suffix=ext_name)
            temp_config_name = osp.basename(temp_config_file.name)
            temp_config_file.close()
            shutil.copyfile(filename, temp_config_file.name)

            temp_module_name = osp.splitext(temp_config_name)[0]
            sys.path.insert(0, temp_config_dir)
            # TODO validate py syntax
            module = import_module(temp_module_name)
            cfg_dict = {k: v for k, v in module.__dict__.items() if not k.startswith('_')}
            del sys.modules[temp_module_name]
            sys.path.pop(0)

        cfg_text = filename + '\n'
        with open(filename, 'r') as f:
            cfg_text += f.read()

        return cfg_dict, cfg_text

    @property
    def cfg_dict(self) -> dict:
        return self._cfg_dict


def read_config_yaml(path: str) -> EasyDict:
    """
    Overview:
        read configuration from path
    Arguments:
        - path (:obj:`str`): Path of source yaml
    Returns:
        - (:obj:`EasyDict`): Config data from this file with dict type
    """
    with open(path, "r") as f:
        config_ = yaml.safe_load(f)

    return EasyDict(config_)


def save_config_yaml(config_: dict, path: str) -> None:
    """
    Overview:
        save configuration to path
    Arguments:
        - config (:obj:`dict`): Config dict
        - path (:obj:`str`): Path of target yaml
    """
    config_string = json.dumps(config_)
    with open(path, "w") as f:
        yaml.safe_dump(json.loads(config_string), f)


def save_config_py(config_: dict, path: str) -> None:
    """
    Overview:
        save configuration to python file
    Arguments:
        - config (:obj:`dict`): Config dict
        - path (:obj:`str`): Path of target yaml
    """
    # config_string = json.dumps(config_, indent=4)
    config_string = str(config_)
    from yapf.yapflib.yapf_api import FormatCode
    config_string, _ = FormatCode(config_string)
    config_string = config_string.replace('inf,', 'float("inf"),')
    with open(path, "w") as f:
        f.write('exp_config = ' + config_string)


def read_config_directly(path: str) -> dict:
    """
    Overview:
        Read configuration from a file path(now only support python file) and directly return results.
    Arguments:
        - path (:obj:`str`): Path of configuration file
    Returns:
        - cfg (:obj:`Tuple[dict, dict]`): Configuration dict.
    """
    suffix = path.split('.')[-1]
    if suffix == 'py':
        return Config.file_to_dict(path).cfg_dict
    else:
        raise KeyError("invalid config file suffix: {}".format(suffix))


def read_config(path: str) -> Tuple[dict, dict]:
    """
    Overview:
        Read configuration from a file path(now only suport python file). And select some proper parts.
    Arguments:
        - path (:obj:`str`): Path of configuration file
    Returns:
        - cfg (:obj:`Tuple[dict, dict]`): A collection(tuple) of configuration dict, divided into `main_config` and \
            `create_cfg` two parts.
    """
    suffix = path.split('.')[-1]
    if suffix == 'py':
        cfg = Config.file_to_dict(path).cfg_dict
        assert "main_config" in cfg, "Please make sure a 'main_config' variable is declared in config python file!"
        assert "create_config" in cfg, "Please make sure a 'create_config' variable is declared in config python file!"
        return cfg['main_config'], cfg['create_config']
    else:
        raise KeyError("invalid config file suffix: {}".format(suffix))


def read_config_with_system(path: str) -> Tuple[dict, dict, dict]:
    """
    Overview:
        Read configuration from a file path(now only suport python file). And select some proper parts
    Arguments:
        - path (:obj:`str`): Path of configuration file
    Returns:
        - cfg (:obj:`Tuple[dict, dict]`): A collection(tuple) of configuration dict, divided into `main_config`, \
            `create_cfg` and `system_config` three parts.
    """
    suffix = path.split('.')[-1]
    if suffix == 'py':
        cfg = Config.file_to_dict(path).cfg_dict
        assert "main_config" in cfg, "Please make sure a 'main_config' variable is declared in config python file!"
        assert "create_config" in cfg, "Please make sure a 'create_config' variable is declared in config python file!"
        assert "system_config" in cfg, "Please make sure a 'system_config' variable is declared in config python file!"
        return cfg['main_config'], cfg['create_config'], cfg['system_config']
    else:
        raise KeyError("invalid config file suffix: {}".format(suffix))


def save_config(config_: dict, path: str, type_: str = 'py', save_formatted: bool = False) -> None:
    """
    Overview:
        save configuration to python file or yaml file
    Arguments:
        - config (:obj:`dict`): Config dict
        - path (:obj:`str`): Path of target yaml or target python file
        - type (:obj:`str`): If type is ``yaml`` , save configuration to yaml file. If type is ``py`` , save\
             configuration to python file.
        - save_formatted (:obj:`bool`): If save_formatted is true, save formatted config to path.\
            Formatted config can be read by serial_pipeline directly.
    """
    assert type_ in ['yaml', 'py'], type_
    if type_ == 'yaml':
        save_config_yaml(config_, path)
    elif type_ == 'py':
        save_config_py(config_, path)
        if save_formatted:
            formated_path = osp.join(osp.dirname(path), 'formatted_' + osp.basename(path))
            save_config_formatted(config_, formated_path)


def compile_buffer_config(policy_cfg: EasyDict, user_cfg: EasyDict, buffer_cls: 'IBuffer') -> EasyDict:  # noqa

    def _compile_buffer_config(policy_buffer_cfg, user_buffer_cfg, buffer_cls):

        if buffer_cls is None:
            assert 'type' in policy_buffer_cfg, "please indicate buffer type in create_cfg"
            buffer_cls = get_buffer_cls(policy_buffer_cfg)
        buffer_cfg = deep_merge_dicts(buffer_cls.default_config(), policy_buffer_cfg)
        buffer_cfg = deep_merge_dicts(buffer_cfg, user_buffer_cfg)
        return buffer_cfg

    policy_multi_buffer = policy_cfg.other.replay_buffer.get('multi_buffer', False)
    user_multi_buffer = user_cfg.policy.get('other', {}).get('replay_buffer', {}).get('multi_buffer', False)
    assert not user_multi_buffer or user_multi_buffer == policy_multi_buffer, "For multi_buffer, \
        user_cfg({}) and policy_cfg({}) must be in accordance".format(user_multi_buffer, policy_multi_buffer)
    multi_buffer = policy_multi_buffer
    if not multi_buffer:
        policy_buffer_cfg = policy_cfg.other.replay_buffer
        user_buffer_cfg = user_cfg.policy.get('other', {}).get('replay_buffer', {})
        return _compile_buffer_config(policy_buffer_cfg, user_buffer_cfg, buffer_cls)
    else:
        return_cfg = EasyDict()
        for buffer_name in policy_cfg.other.replay_buffer:  # Only traverse keys in policy_cfg
            if buffer_name == 'multi_buffer':
                continue
            policy_buffer_cfg = policy_cfg.other.replay_buffer[buffer_name]
            user_buffer_cfg = user_cfg.policy.get('other', {}).get('replay_buffer', {}).get('buffer_name', {})
            if buffer_cls is None:
                return_cfg[buffer_name] = _compile_buffer_config(policy_buffer_cfg, user_buffer_cfg, None)
            else:
                return_cfg[buffer_name] = _compile_buffer_config(
                    policy_buffer_cfg, user_buffer_cfg, buffer_cls[buffer_name]
                )
            return_cfg[buffer_name].name = buffer_name
        return return_cfg


def compile_collector_config(
        policy_cfg: EasyDict,
        user_cfg: EasyDict,
        collector_cls: 'ISerialCollector'  # noqa
) -> EasyDict:
    policy_collector_cfg = policy_cfg.collect.collector
    user_collector_cfg = user_cfg.policy.get('collect', {}).get('collector', {})
    # step1: get collector class
    # two cases: create cfg merged in policy_cfg, collector class, and class has higher priority
    if collector_cls is None:
        assert 'type' in policy_collector_cfg, "please indicate collector type in create_cfg"
        # use type to get collector_cls
        collector_cls = get_serial_collector_cls(policy_collector_cfg)
    # step2: policy collector cfg merge to collector cfg
    collector_cfg = deep_merge_dicts(collector_cls.default_config(), policy_collector_cfg)
    # step3: user collector cfg merge to the step2 config
    collector_cfg = deep_merge_dicts(collector_cfg, user_collector_cfg)

    return collector_cfg


policy_config_template = dict(
    model=dict(),
    learn=dict(learner=dict()),
    collect=dict(collector=dict()),
    eval=dict(evaluator=dict()),
    other=dict(replay_buffer=dict()),
)
policy_config_template = EasyDict(policy_config_template)
env_config_template = dict(manager=dict(), stop_value=int(1e10), n_evaluator_episode=4)
env_config_template = EasyDict(env_config_template)


def save_project_state(exp_name: str) -> None:

    def _fn(cmd: str):
        return subprocess.run(cmd, shell=True, stdout=subprocess.PIPE).stdout.strip().decode("utf-8")

    if subprocess.run("git status", shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE).returncode == 0:
        short_sha = _fn("git describe --always")
        log = _fn("git log --stat -n 5")
        diff = _fn("git diff")
        with open(os.path.join(exp_name, "git_log.txt"), "w", encoding='utf-8') as f:
            f.write(short_sha + '\n\n' + log)
        with open(os.path.join(exp_name, "git_diff.txt"), "w", encoding='utf-8') as f:
            f.write(diff)


def compile_config(
        cfg: EasyDict,
        env_manager: type = None,
        policy: type = None,
        learner: type = BaseLearner,
        collector: type = None,
        evaluator: type = InteractionSerialEvaluator,
        buffer: type = None,
        env: type = None,
        reward_model: type = None,
        world_model: type = None,
        seed: int = 0,
        auto: bool = False,
        create_cfg: dict = None,
        save_cfg: bool = True,
        save_path: str = 'total_config.py',
        renew_dir: bool = True,
) -> EasyDict:
    """
    Overview:
        Combine the input config information with other input information.
        Compile config to make it easy to be called by other programs
    Arguments:
        - cfg (:obj:`EasyDict`): Input config dict which is to be used in the following pipeline
        - env_manager (:obj:`type`): Env_manager class which is to be used in the following pipeline
        - policy (:obj:`type`): Policy class which is to be used in the following pipeline
        - learner (:obj:`type`): Input learner class, defaults to BaseLearner
        - collector (:obj:`type`): Input collector class, defaults to BaseSerialCollector
        - evaluator (:obj:`type`): Input evaluator class, defaults to InteractionSerialEvaluator
        - buffer (:obj:`type`): Input buffer class, defaults to IBuffer
        - env (:obj:`type`): Environment class which is to be used in the following pipeline
        - reward_model (:obj:`type`): Reward model class which aims to offer various and valuable reward
        - seed (:obj:`int`): Random number seed
        - auto (:obj:`bool`): Compile create_config dict or not
        - create_cfg (:obj:`dict`): Input create config dict
        - save_cfg (:obj:`bool`): Save config or not
        - save_path (:obj:`str`): Path of saving file
        - renew_dir (:obj:`bool`): Whether to new a directory for saving config.
    Returns:
        - cfg (:obj:`EasyDict`): Config after compiling
    """
    cfg, create_cfg = deepcopy(cfg), deepcopy(create_cfg)
    if auto:
        assert create_cfg is not None
        # for compatibility
        if 'collector' not in create_cfg:
            create_cfg.collector = EasyDict(dict(type='sample'))
        if 'replay_buffer' not in create_cfg:
            create_cfg.replay_buffer = EasyDict(dict(type='advanced'))
            buffer = AdvancedReplayBuffer
        if env is None:
            if 'env' in create_cfg:
                env = get_env_cls(create_cfg.env)
            else:
                env = None
                create_cfg.env = {'type': 'ding_env_wrapper_generated'}
        if env_manager is None:
            env_manager = get_env_manager_cls(create_cfg.env_manager)
        if policy is None:
            policy = get_policy_cls(create_cfg.policy)
        if 'default_config' in dir(env):
            env_config = env.default_config()
        else:
            env_config = EasyDict()  # env does not have default_config
        env_config = deep_merge_dicts(env_config_template, env_config)
        env_config.update(create_cfg.env)
        env_config.manager = deep_merge_dicts(env_manager.default_config(), env_config.manager)
        env_config.manager.update(create_cfg.env_manager)
        policy_config = policy.default_config()
        policy_config = deep_merge_dicts(policy_config_template, policy_config)
        policy_config.update(create_cfg.policy)
        policy_config.collect.collector.update(create_cfg.collector)
        if 'evaluator' in create_cfg:
            policy_config.eval.evaluator.update(create_cfg.evaluator)
        policy_config.other.replay_buffer.update(create_cfg.replay_buffer)

        policy_config.other.commander = BaseSerialCommander.default_config()
        if 'reward_model' in create_cfg:
            reward_model = get_reward_model_cls(create_cfg.reward_model)
            reward_model_config = reward_model.default_config()
        else:
            reward_model_config = EasyDict()
        if 'world_model' in create_cfg:
            world_model = get_world_model_cls(create_cfg.world_model)
            world_model_config = world_model.default_config()
            world_model_config.update(create_cfg.world_model)
        else:
            world_model_config = EasyDict()
    else:
        if 'default_config' in dir(env):
            env_config = env.default_config()
        else:
            env_config = EasyDict()  # env does not have default_config
        env_config = deep_merge_dicts(env_config_template, env_config)
        if env_manager is None:
            env_manager = BaseEnvManager  # for compatibility
        env_config.manager = deep_merge_dicts(env_manager.default_config(), env_config.manager)
        policy_config = policy.default_config()
        policy_config = deep_merge_dicts(policy_config_template, policy_config)
        if reward_model is None:
            reward_model_config = EasyDict()
        else:
            reward_model_config = reward_model.default_config()
        if world_model is None:
            world_model_config = EasyDict()
        else:
            world_model_config = world_model.default_config()
            world_model_config.update(create_cfg.world_model)
    policy_config.learn.learner = deep_merge_dicts(
        learner.default_config(),
        policy_config.learn.learner,
    )
    if create_cfg is not None or collector is not None:
        policy_config.collect.collector = compile_collector_config(policy_config, cfg, collector)
    if evaluator:
        policy_config.eval.evaluator = deep_merge_dicts(
            evaluator.default_config(),
            policy_config.eval.evaluator,
        )
    if create_cfg is not None or buffer is not None:
        policy_config.other.replay_buffer = compile_buffer_config(policy_config, cfg, buffer)
    default_config = EasyDict({'env': env_config, 'policy': policy_config})
    if len(reward_model_config) > 0:
        default_config['reward_model'] = reward_model_config
    if len(world_model_config) > 0:
        default_config['world_model'] = world_model_config
    cfg = deep_merge_dicts(default_config, cfg)
    if 'unroll_len' in cfg.policy:
        cfg.policy.collect.unroll_len = cfg.policy.unroll_len
    cfg.seed = seed
    # check important key in config
    if evaluator in [InteractionSerialEvaluator, BattleInteractionSerialEvaluator]:  # env interaction evaluation
        cfg.policy.eval.evaluator.stop_value = cfg.env.stop_value
        cfg.policy.eval.evaluator.n_episode = cfg.env.n_evaluator_episode
    if 'exp_name' not in cfg:
        cfg.exp_name = 'default_experiment'
    if save_cfg and get_rank() == 0:
        if os.path.exists(cfg.exp_name) and renew_dir:
            cfg.exp_name += datetime.datetime.now().strftime("_%y%m%d_%H%M%S")
        try:
            os.makedirs(cfg.exp_name)
        except FileExistsError:
            pass
        save_project_state(cfg.exp_name)
        save_path = os.path.join(cfg.exp_name, save_path)
        save_config(cfg, save_path, save_formatted=True)
    return cfg


def compile_config_parallel(
        cfg: EasyDict,
        create_cfg: EasyDict,
        system_cfg: EasyDict,
        seed: int = 0,
        save_cfg: bool = True,
        save_path: str = 'total_config.py',
        platform: str = 'local',
        coordinator_host: Optional[str] = None,
        learner_host: Optional[str] = None,
        collector_host: Optional[str] = None,
        coordinator_port: Optional[int] = None,
        learner_port: Optional[int] = None,
        collector_port: Optional[int] = None,
) -> EasyDict:
    """
    Overview:
        Combine the input parallel mode configuration information with other input information. Compile config\
             to make it easy to be called by other programs
    Arguments:
        - cfg (:obj:`EasyDict`): Input main config dict
        - create_cfg (:obj:`dict`): Input create config dict, including type parameters, such as environment type
        - system_cfg (:obj:`dict`): Input system config dict, including system parameters, such as file path,\
            communication mode, use multiple GPUs or not
        - seed (:obj:`int`): Random number seed
        - save_cfg (:obj:`bool`): Save config or not
        - save_path (:obj:`str`): Path of saving file
        - platform (:obj:`str`): Where to run the program, 'local' or 'slurm'
        - coordinator_host (:obj:`Optional[str]`): Input coordinator's host when platform is slurm
        - learner_host (:obj:`Optional[str]`): Input learner's host when platform is slurm
        - collector_host (:obj:`Optional[str]`): Input collector's host when platform is slurm
    Returns:
        - cfg (:obj:`EasyDict`): Config after compiling
    """
    # for compatibility
    if 'replay_buffer' not in create_cfg:
        create_cfg.replay_buffer = EasyDict(dict(type='advanced'))
    # env
    env = get_env_cls(create_cfg.env)
    if 'default_config' in dir(env):
        env_config = env.default_config()
    else:
        env_config = EasyDict()  # env does not have default_config
    env_config = deep_merge_dicts(env_config_template, env_config)
    env_config.update(create_cfg.env)

    env_manager = get_env_manager_cls(create_cfg.env_manager)
    env_config.manager = env_manager.default_config()
    env_config.manager.update(create_cfg.env_manager)

    # policy
    policy = get_policy_cls(create_cfg.policy)
    policy_config = policy.default_config()
    policy_config = deep_merge_dicts(policy_config_template, policy_config)
    cfg.policy.update(create_cfg.policy)

    collector = get_parallel_collector_cls(create_cfg.collector)
    policy_config.collect.collector = collector.default_config()
    policy_config.collect.collector.update(create_cfg.collector)
    policy_config.learn.learner = BaseLearner.default_config()
    policy_config.learn.learner.update(create_cfg.learner)
    commander = get_parallel_commander_cls(create_cfg.commander)
    policy_config.other.commander = commander.default_config()
    policy_config.other.commander.update(create_cfg.commander)
    policy_config.other.replay_buffer.update(create_cfg.replay_buffer)
    policy_config.other.replay_buffer = compile_buffer_config(policy_config, cfg, None)

    default_config = EasyDict({'env': env_config, 'policy': policy_config})
    cfg = deep_merge_dicts(default_config, cfg)

    cfg.policy.other.commander.path_policy = system_cfg.path_policy  # league may use 'path_policy'

    # system
    for k in ['comm_learner', 'comm_collector']:
        system_cfg[k] = create_cfg[k]
    if platform == 'local':
        cfg = parallel_transform(EasyDict({'main': cfg, 'system': system_cfg}))
    elif platform == 'slurm':
        cfg = parallel_transform_slurm(
            EasyDict({
                'main': cfg,
                'system': system_cfg
            }), coordinator_host, learner_host, collector_host
        )
    elif platform == 'k8s':
        cfg = parallel_transform_k8s(
            EasyDict({
                'main': cfg,
                'system': system_cfg
            }),
            coordinator_port=coordinator_port,
            learner_port=learner_port,
            collector_port=collector_port
        )
    else:
        raise KeyError("not support platform type: {}".format(platform))
    cfg.system.coordinator = deep_merge_dicts(Coordinator.default_config(), cfg.system.coordinator)
    # seed
    cfg.seed = seed

    if save_cfg:
        save_config(cfg, save_path)
    return cfg