File size: 4,701 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
from typing import Optional
import copy
from easydict import EasyDict
import numpy as np
import hickle

from ding.data.buffer import DequeBuffer
from ding.data.buffer.middleware import use_time_check, PriorityExperienceReplay
from ding.utils import BUFFER_REGISTRY


@BUFFER_REGISTRY.register('deque')
class DequeBufferWrapper(object):

    @classmethod
    def default_config(cls: type) -> EasyDict:
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    config = dict(
        replay_buffer_size=10000,
        max_use=float("inf"),
        train_iter_per_log=100,
        priority=False,
        priority_IS_weight=False,
        priority_power_factor=0.6,
        IS_weight_power_factor=0.4,
        IS_weight_anneal_train_iter=int(1e5),
        priority_max_limit=1000,
    )

    def __init__(
            self,
            cfg: EasyDict,
            tb_logger: Optional[object] = None,
            exp_name: str = 'default_experiement',
            instance_name: str = 'buffer'
    ) -> None:
        self.cfg = cfg
        self.priority_max_limit = cfg.priority_max_limit
        self.name = '{}_iter'.format(instance_name)
        self.tb_logger = tb_logger
        self.buffer = DequeBuffer(size=cfg.replay_buffer_size)
        self.last_log_train_iter = -1

        # use_count middleware
        if self.cfg.max_use != float("inf"):
            self.buffer.use(use_time_check(self.buffer, max_use=self.cfg.max_use))
        # priority middleware
        if self.cfg.priority:
            self.buffer.use(
                PriorityExperienceReplay(
                    self.buffer,
                    IS_weight=self.cfg.priority_IS_weight,
                    priority_power_factor=self.cfg.priority_power_factor,
                    IS_weight_power_factor=self.cfg.IS_weight_power_factor,
                    IS_weight_anneal_train_iter=self.cfg.IS_weight_anneal_train_iter
                )
            )
            self.last_sample_index = None
            self.last_sample_meta = None

    def sample(self, size: int, train_iter: int = 0):
        output = self.buffer.sample(size=size, ignore_insufficient=True)
        if len(output) > 0:
            if self.last_log_train_iter == -1 or train_iter - self.last_log_train_iter >= self.cfg.train_iter_per_log:
                meta = [o.meta for o in output]
                if self.cfg.max_use != float("inf"):
                    use_count_avg = np.mean([m['use_count'] for m in meta])
                    self.tb_logger.add_scalar('{}/use_count_avg'.format(self.name), use_count_avg, train_iter)
                if self.cfg.priority:
                    self.last_sample_index = [o.index for o in output]
                    self.last_sample_meta = meta
                    priority_list = [m['priority'] for m in meta]
                    priority_avg = np.mean(priority_list)
                    priority_max = np.max(priority_list)
                    self.tb_logger.add_scalar('{}/priority_avg'.format(self.name), priority_avg, train_iter)
                    self.tb_logger.add_scalar('{}/priority_max'.format(self.name), priority_max, train_iter)
                self.tb_logger.add_scalar('{}/buffer_data_count'.format(self.name), self.buffer.count(), train_iter)
                self.last_log_train_iter = train_iter

            data = [o.data for o in output]
            if self.cfg.priority_IS_weight:
                IS = [o.meta['priority_IS'] for o in output]
                for i in range(len(data)):
                    data[i]['IS'] = IS[i]
            return data
        else:
            return None

    def push(self, data, cur_collector_envstep: int = -1) -> None:
        for d in data:
            meta = {}
            if self.cfg.priority and 'priority' in d:
                init_priority = d.pop('priority')
                meta['priority'] = init_priority
            self.buffer.push(d, meta=meta)

    def update(self, meta: dict) -> None:
        if not self.cfg.priority:
            return
        if self.last_sample_index is None:
            return
        new_meta = self.last_sample_meta
        for m, p in zip(new_meta, meta['priority']):
            m['priority'] = min(self.priority_max_limit, p)
        for idx, m in zip(self.last_sample_index, new_meta):
            self.buffer.update(idx, data=None, meta=m)
        self.last_sample_index = None
        self.last_sample_meta = None

    def count(self) -> int:
        return self.buffer.count()

    def save_data(self, file_name):
        self.buffer.save_data(file_name)

    def load_data(self, file_name: str):
        self.buffer.load_data(file_name)