File size: 11,834 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from typing import Union, Optional, List, Any, Tuple
import os
import pickle
import numpy as np
import torch
from functools import partial
from copy import deepcopy

from ding.config import compile_config, read_config
from ding.worker import SampleSerialCollector, InteractionSerialEvaluator, EpisodeSerialCollector
from ding.envs import create_env_manager, get_vec_env_setting
from ding.policy import create_policy
from ding.torch_utils import to_device, to_ndarray
from ding.utils import set_pkg_seed
from ding.utils.data import offline_data_save_type
from ding.rl_utils import get_nstep_return_data
from ding.utils.data import default_collate


def eval(
        input_cfg: Union[str, Tuple[dict, dict]],
        seed: int = 0,
        env_setting: Optional[List[Any]] = None,
        model: Optional[torch.nn.Module] = None,
        state_dict: Optional[dict] = None,
        load_path: Optional[str] = None,
        replay_path: Optional[str] = None,
) -> float:
    """
    Overview:
        Pure policy evaluation entry. Evaluate mean episode return and save replay videos.
    Arguments:
        - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
            ``str`` type means config file path. \
            ``Tuple[dict, dict]`` type means [user_config, create_cfg].
        - seed (:obj:`int`): Random seed.
        - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
            ``BaseEnv`` subclass, collector env config, and evaluator env config.
        - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
        - state_dict (:obj:`Optional[dict]`): The state_dict of policy or model.
        - load_path (:obj:`Optional[str]`): Path to load ckpt.
        - replay_path (:obj:`Optional[str]`): Path to save replay.
    """
    if isinstance(input_cfg, str):
        cfg, create_cfg = read_config(input_cfg)
    else:
        cfg, create_cfg = deepcopy(input_cfg)
    env_fn = None if env_setting is None else env_setting[0]
    cfg = compile_config(
        cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True, save_path='eval_config.py'
    )

    # Create components: env, policy, evaluator
    if env_setting is None:
        env_fn, _, evaluator_env_cfg = get_vec_env_setting(cfg.env, collect=False)
    else:
        env_fn, _, evaluator_env_cfg = env_setting
    evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg])
    evaluator_env.seed(seed, dynamic_seed=False)
    if replay_path is None:  # argument > config
        replay_path = cfg.env.get('replay_path', None)
    if replay_path:
        evaluator_env.enable_save_replay(replay_path)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
    policy = create_policy(cfg.policy, model=model, enable_field=['eval'])
    if state_dict is None:
        if load_path is None:
            load_path = cfg.policy.learn.learner.load_path
        state_dict = torch.load(load_path, map_location='cpu')
    policy.eval_mode.load_state_dict(state_dict)
    evaluator = InteractionSerialEvaluator(cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode)

    # Evaluate
    _, episode_info = evaluator.eval()
    episode_return = np.mean(episode_info['eval_episode_return'])
    print('Eval is over! The performance of your RL policy is {}'.format(episode_return))
    return episode_return


def collect_demo_data(
        input_cfg: Union[str, dict],
        seed: int,
        collect_count: int,
        expert_data_path: Optional[str] = None,
        env_setting: Optional[List[Any]] = None,
        model: Optional[torch.nn.Module] = None,
        state_dict: Optional[dict] = None,
        state_dict_path: Optional[str] = None,
) -> None:
    r"""
    Overview:
        Collect demonstration data by the trained policy.
    Arguments:
        - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
            ``str`` type means config file path. \
            ``Tuple[dict, dict]`` type means [user_config, create_cfg].
        - seed (:obj:`int`): Random seed.
        - collect_count (:obj:`int`): The count of collected data.
        - expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
        - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
            ``BaseEnv`` subclass, collector env config, and evaluator env config.
        - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
        - state_dict (:obj:`Optional[dict]`): The state_dict of policy or model.
        - state_dict_path (:obj:`Optional[str]`): The path of the state_dict of policy or model.
    """
    if isinstance(input_cfg, str):
        cfg, create_cfg = read_config(input_cfg)
    else:
        cfg, create_cfg = deepcopy(input_cfg)
    env_fn = None if env_setting is None else env_setting[0]
    cfg = compile_config(
        cfg,
        seed=seed,
        env=env_fn,
        auto=True,
        create_cfg=create_cfg,
        save_cfg=True,
        save_path='collect_demo_data_config.py'
    )
    if expert_data_path is None:
        expert_data_path = cfg.policy.collect.save_path

    # Create components: env, policy, collector
    if env_setting is None:
        env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False)
    else:
        env_fn, collector_env_cfg, _ = env_setting
    collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg])
    collector_env.seed(seed)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
    policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval'])
    # for policies like DQN (in collect_mode has eps-greedy)
    # collect_demo_policy = policy.collect_function(
    #     policy._forward_eval,
    #     policy._process_transition,
    #     policy._get_train_sample,
    #     policy._reset_eval,
    #     policy._get_attribute,
    #     policy._set_attribute,
    #     policy._state_dict_collect,
    #     policy._load_state_dict_collect,
    # )
    collect_demo_policy = policy.collect_mode
    if state_dict is None:
        assert state_dict_path is not None
        state_dict = torch.load(state_dict_path, map_location='cpu')
    policy.collect_mode.load_state_dict(state_dict)
    collector = SampleSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy)

    if hasattr(cfg.policy.other, 'eps'):
        policy_kwargs = {'eps': 0.}
    else:
        policy_kwargs = None

    # Let's collect some expert demonstrations
    exp_data = collector.collect(n_sample=collect_count, policy_kwargs=policy_kwargs)
    if cfg.policy.cuda:
        exp_data = to_device(exp_data, 'cpu')
    # Save data transitions.
    offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive'))
    print('Collect demo data successfully')


def collect_episodic_demo_data(
        input_cfg: Union[str, dict],
        seed: int,
        collect_count: int,
        expert_data_path: str,
        env_setting: Optional[List[Any]] = None,
        model: Optional[torch.nn.Module] = None,
        state_dict: Optional[dict] = None,
        state_dict_path: Optional[str] = None,
) -> None:
    r"""
    Overview:
        Collect episodic demonstration data by the trained policy.
    Arguments:
        - input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
            ``str`` type means config file path. \
            ``Tuple[dict, dict]`` type means [user_config, create_cfg].
        - seed (:obj:`int`): Random seed.
        - collect_count (:obj:`int`): The count of collected data.
        - expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
        - env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
            ``BaseEnv`` subclass, collector env config, and evaluator env config.
        - model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
        - state_dict (:obj:`Optional[dict]`): The state_dict of policy or model.
        - state_dict_path (:obj:'str') the abs path of the state dict
    """
    if isinstance(input_cfg, str):
        cfg, create_cfg = read_config(input_cfg)
    else:
        cfg, create_cfg = deepcopy(input_cfg)
    env_fn = None if env_setting is None else env_setting[0]
    cfg = compile_config(
        cfg,
        collector=EpisodeSerialCollector,
        seed=seed,
        env=env_fn,
        auto=True,
        create_cfg=create_cfg,
        save_cfg=True,
        save_path='collect_demo_data_config.py'
    )

    # Create components: env, policy, collector
    if env_setting is None:
        env_fn, collector_env_cfg, _ = get_vec_env_setting(cfg.env, eval_=False)
    else:
        env_fn, collector_env_cfg, _ = env_setting
    collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg])
    collector_env.seed(seed)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)
    policy = create_policy(cfg.policy, model=model, enable_field=['collect', 'eval'])
    collect_demo_policy = policy.collect_mode
    if state_dict is None:
        assert state_dict_path is not None
        state_dict = torch.load(state_dict_path, map_location='cpu')
    policy.collect_mode.load_state_dict(state_dict)
    collector = EpisodeSerialCollector(cfg.policy.collect.collector, collector_env, collect_demo_policy)

    if hasattr(cfg.policy.other, 'eps'):
        policy_kwargs = {'eps': 0.}
    else:
        policy_kwargs = None

    # Let's collect some expert demonstrations
    exp_data = collector.collect(n_episode=collect_count, policy_kwargs=policy_kwargs)
    if cfg.policy.cuda:
        exp_data = to_device(exp_data, 'cpu')
    # Save data transitions.
    offline_data_save_type(exp_data, expert_data_path, data_type=cfg.policy.collect.get('data_type', 'naive'))
    print('Collect episodic demo data successfully')


def episode_to_transitions(data_path: str, expert_data_path: str, nstep: int) -> None:
    r"""
    Overview:
        Transfer episodic data into nstep transitions.
    Arguments:
        - data_path (:obj:str): data path that stores the pkl file
        - expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
        - nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}.

    """
    with open(data_path, 'rb') as f:
        _dict = pickle.load(f)  # class is list; length is cfg.reward_model.collect_count
    post_process_data = []
    for i in range(len(_dict)):
        data = get_nstep_return_data(_dict[i], nstep)
        post_process_data.extend(data)
    offline_data_save_type(
        post_process_data,
        expert_data_path,
    )


def episode_to_transitions_filter(data_path: str, expert_data_path: str, nstep: int, min_episode_return: int) -> None:
    r"""
    Overview:
        Transfer episodic data into n-step transitions and only take the episode data whose return is larger than
        min_episode_return.
    Arguments:
        - data_path (:obj:str): data path that stores the pkl file
        - expert_data_path (:obj:`str`): File path of the expert demo data will be written to.
        - nstep (:obj:`int`): {s_{t}, a_{t}, s_{t+n}}.

    """
    with open(data_path, 'rb') as f:
        _dict = pickle.load(f)  # class is list; length is cfg.reward_model.collect_count
    post_process_data = []
    for i in range(len(_dict)):
        episode_returns = torch.stack([_dict[i][j]['reward'] for j in range(_dict[i].__len__())], axis=0)
        if episode_returns.sum() < min_episode_return:
            continue
        data = get_nstep_return_data(_dict[i], nstep)
        post_process_data.extend(data)
    offline_data_save_type(
        post_process_data,
        expert_data_path,
    )