File size: 13,003 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from typing import List, Union
import os
import copy
import click
from click.core import Context, Option
import numpy as np

from ding import __TITLE__, __VERSION__, __AUTHOR__, __AUTHOR_EMAIL__
from ding.config import read_config
from .predefined_config import get_predefined_config


def print_version(ctx: Context, param: Option, value: bool) -> None:
    if not value or ctx.resilient_parsing:
        return
    click.echo('{title}, version {version}.'.format(title=__TITLE__, version=__VERSION__))
    click.echo('Developed by {author}, {email}.'.format(author=__AUTHOR__, email=__AUTHOR_EMAIL__))
    ctx.exit()


def print_registry(ctx: Context, param: Option, value: str):
    if value is None:
        return
    from ding.utils import registries  # noqa
    if value not in registries:
        click.echo('[ERROR]: not support registry name: {}'.format(value))
    else:
        registered_info = registries[value].query_details()
        click.echo('Available {}: [{}]'.format(value, '|'.join(registered_info.keys())))
        for alias, info in registered_info.items():
            click.echo('\t{}: registered at {}#{}'.format(alias, info[0], info[1]))
    ctx.exit()


CONTEXT_SETTINGS = dict(help_option_names=['-h', '--help'])


@click.command(context_settings=CONTEXT_SETTINGS)
@click.option(
    '-v',
    '--version',
    is_flag=True,
    callback=print_version,
    expose_value=False,
    is_eager=True,
    help="Show package's version information."
)
@click.option(
    '-q',
    '--query-registry',
    type=str,
    callback=print_registry,
    expose_value=False,
    is_eager=True,
    help='query registered module or function, show name and path'
)
@click.option(
    '-m',
    '--mode',
    type=click.Choice(
        [
            'serial',
            'serial_onpolicy',
            'serial_sqil',
            'serial_dqfd',
            'serial_trex',
            'serial_trex_onpolicy',
            'parallel',
            'dist',
            'eval',
            'serial_reward_model',
            'serial_gail',
            'serial_offline',
            'serial_ngu',
        ]
    ),
    help='serial-train or parallel-train or dist-train or eval'
)
@click.option('-c', '--config', type=str, help='Path to DRL experiment config')
@click.option(
    '-s',
    '--seed',
    type=int,
    default=[0],
    multiple=True,
    help='random generator seed(for all the possible package: random, numpy, torch and user env)'
)
@click.option('-e', '--env', type=str, help='RL env name')
@click.option('-p', '--policy', type=str, help='DRL policy name')
@click.option('--exp-name', type=str, help='experiment directory name')
@click.option('--train-iter', type=str, default='1e8', help='Maximum policy update iterations in training')
@click.option('--env-step', type=str, default='1e8', help='Maximum collected environment steps for training')
@click.option('--load-path', type=str, default=None, help='Path to load ckpt')
@click.option('--replay-path', type=str, default=None, help='Path to save replay')
# the following arguments are only applied to dist mode
@click.option('--enable-total-log', type=bool, help='whether enable the total DI-engine system log', default=False)
@click.option('--disable-flask-log', type=bool, help='whether disable flask log', default=True)
@click.option(
    '-P', '--platform', type=click.Choice(['local', 'slurm', 'k8s']), help='local or slurm or k8s', default='local'
)
@click.option(
    '-M',
    '--module',
    type=click.Choice(['config', 'collector', 'learner', 'coordinator', 'learner_aggregator', 'spawn_learner']),
    help='dist module type'
)
@click.option('--module-name', type=str, help='dist module name')
@click.option('-cdh', '--coordinator-host', type=str, help='coordinator host', default='0.0.0.0')
@click.option('-cdp', '--coordinator-port', type=int, help='coordinator port')
@click.option('-lh', '--learner-host', type=str, help='learner host', default='0.0.0.0')
@click.option('-lp', '--learner-port', type=int, help='learner port')
@click.option('-clh', '--collector-host', type=str, help='collector host', default='0.0.0.0')
@click.option('-clp', '--collector-port', type=int, help='collector port')
@click.option('-agh', '--aggregator-host', type=str, help='aggregator slave host', default='0.0.0.0')
@click.option('-agp', '--aggregator-port', type=int, help='aggregator slave port')
@click.option('--add', type=click.Choice(['collector', 'learner']), help='add replicas type')
@click.option('--delete', type=click.Choice(['collector', 'learner']), help='delete replicas type')
@click.option('--restart', type=click.Choice(['collector', 'learner']), help='restart replicas type')
@click.option('--kubeconfig', type=str, default=None, help='the path of Kubernetes configuration file')
@click.option('-cdn', '--coordinator-name', type=str, default=None, help='coordinator name')
@click.option('-ns', '--namespace', type=str, default=None, help='job namespace')
@click.option('-rs', '--replicas', type=int, default=1, help='number of replicas to add/delete/restart')
@click.option('-rpn', '--restart-pod-name', type=str, default=None, help='restart pod name')
@click.option('--cpus', type=int, default=0, help='The requested CPU, read the value from DIJob yaml by default')
@click.option('--gpus', type=int, default=0, help='The requested GPU, read the value from DIJob yaml by default')
@click.option(
    '--memory', type=str, default=None, help='The requested Memory, read the value from DIJob yaml by default'
)
@click.option(
    '--profile',
    type=str,
    default=None,
    help='profile Time cost by cProfile, and save the files into the specified folder path'
)
def cli(
    # serial/eval
    mode: str,
    config: str,
    seed: Union[int, List],
    exp_name: str,
    env: str,
    policy: str,
    train_iter: str,  # transform into int
    env_step: str,  # transform into int
    load_path: str,
    replay_path: str,
    # parallel/dist
    platform: str,
    coordinator_host: str,
    coordinator_port: int,
    learner_host: str,
    learner_port: int,
    collector_host: str,
    collector_port: int,
    aggregator_host: str,
    aggregator_port: int,
    enable_total_log: bool,
    disable_flask_log: bool,
    module: str,
    module_name: str,
    # add/delete/restart
    add: str,
    delete: str,
    restart: str,
    kubeconfig: str,
    coordinator_name: str,
    namespace: str,
    replicas: int,
    cpus: int,
    gpus: int,
    memory: str,
    restart_pod_name: str,
    profile: str,
):
    if profile is not None:
        from ..utils.profiler_helper import Profiler
        profiler = Profiler()
        profiler.profile(profile)

    train_iter = int(float(train_iter))
    env_step = int(float(env_step))

    def run_single_pipeline(seed, config):
        if config is None:
            config = get_predefined_config(env, policy)
        else:
            config = read_config(config)
        if exp_name is not None:
            config[0].exp_name = exp_name

        if mode == 'serial':
            from .serial_entry import serial_pipeline
            serial_pipeline(config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_onpolicy':
            from .serial_entry_onpolicy import serial_pipeline_onpolicy
            serial_pipeline_onpolicy(config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_sqil':
            from .serial_entry_sqil import serial_pipeline_sqil
            expert_config = input("Enter the name of the config you used to generate your expert model: ")
            serial_pipeline_sqil(config, expert_config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_reward_model':
            from .serial_entry_reward_model_offpolicy import serial_pipeline_reward_model_offpolicy
            serial_pipeline_reward_model_offpolicy(config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_gail':
            from .serial_entry_gail import serial_pipeline_gail
            expert_config = input("Enter the name of the config you used to generate your expert model: ")
            serial_pipeline_gail(
                config, expert_config, seed, max_train_iter=train_iter, max_env_step=env_step, collect_data=True
            )
        elif mode == 'serial_dqfd':
            from .serial_entry_dqfd import serial_pipeline_dqfd
            expert_config = input("Enter the name of the config you used to generate your expert model: ")
            assert (expert_config == config[:config.find('_dqfd')] + '_dqfd_config.py'), "DQFD only supports "\
            + "the models used in q learning now; However, one should still type the DQFD config in this "\
            + "place, i.e., {}{}".format(config[:config.find('_dqfd')], '_dqfd_config.py')
            serial_pipeline_dqfd(config, expert_config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_trex':
            from .serial_entry_trex import serial_pipeline_trex
            serial_pipeline_trex(config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_trex_onpolicy':
            from .serial_entry_trex_onpolicy import serial_pipeline_trex_onpolicy
            serial_pipeline_trex_onpolicy(config, seed, max_train_iter=train_iter, max_env_step=env_step)
        elif mode == 'serial_offline':
            from .serial_entry_offline import serial_pipeline_offline
            serial_pipeline_offline(config, seed, max_train_iter=train_iter)
        elif mode == 'serial_ngu':
            from .serial_entry_ngu import serial_pipeline_ngu
            serial_pipeline_ngu(config, seed, max_train_iter=train_iter)
        elif mode == 'parallel':
            from .parallel_entry import parallel_pipeline
            parallel_pipeline(config, seed, enable_total_log, disable_flask_log)
        elif mode == 'dist':
            from .dist_entry import dist_launch_coordinator, dist_launch_collector, dist_launch_learner, \
                dist_prepare_config, dist_launch_learner_aggregator, dist_launch_spawn_learner, \
                dist_add_replicas, dist_delete_replicas, dist_restart_replicas
            if module == 'config':
                dist_prepare_config(
                    config, seed, platform, coordinator_host, learner_host, collector_host, coordinator_port,
                    learner_port, collector_port
                )
            elif module == 'coordinator':
                dist_launch_coordinator(config, seed, coordinator_port, disable_flask_log)
            elif module == 'learner_aggregator':
                dist_launch_learner_aggregator(
                    config, seed, aggregator_host, aggregator_port, module_name, disable_flask_log
                )

            elif module == 'collector':
                dist_launch_collector(config, seed, collector_port, module_name, disable_flask_log)
            elif module == 'learner':
                dist_launch_learner(config, seed, learner_port, module_name, disable_flask_log)
            elif module == 'spawn_learner':
                dist_launch_spawn_learner(config, seed, learner_port, module_name, disable_flask_log)
            elif add in ['collector', 'learner']:
                dist_add_replicas(add, kubeconfig, replicas, coordinator_name, namespace, cpus, gpus, memory)
            elif delete in ['collector', 'learner']:
                dist_delete_replicas(delete, kubeconfig, replicas, coordinator_name, namespace)
            elif restart in ['collector', 'learner']:
                dist_restart_replicas(restart, kubeconfig, coordinator_name, namespace, restart_pod_name)
            else:
                raise Exception
        elif mode == 'eval':
            from .application_entry import eval
            eval(config, seed, load_path=load_path, replay_path=replay_path)

    if mode is None:
        raise RuntimeError("Please indicate at least one argument.")

    if isinstance(seed, (list, tuple)):
        assert len(seed) > 0, "Please input at least 1 seed"
        if len(seed) == 1:  # necessary
            run_single_pipeline(seed[0], config)
        else:
            if exp_name is None:
                multi_exp_root = os.path.basename(config).split('.')[0] + '_result'
            else:
                multi_exp_root = exp_name
            if not os.path.exists(multi_exp_root):
                os.makedirs(multi_exp_root)
            abs_config_path = os.path.abspath(config)
            origin_root = os.getcwd()
            for s in seed:
                seed_exp_root = os.path.join(multi_exp_root, 'seed{}'.format(s))
                if not os.path.exists(seed_exp_root):
                    os.makedirs(seed_exp_root)
                os.chdir(seed_exp_root)
                run_single_pipeline(s, abs_config_path)
                os.chdir(origin_root)
    else:
        raise TypeError("invalid seed type: {}".format(type(seed)))