File size: 8,837 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
from typing import Union, Optional, List, Any, Tuple
import os
import torch
from ditk import logging
from functools import partial
from tensorboardX import SummaryWriter
from copy import deepcopy
from ding.envs import get_vec_env_setting, create_env_manager
from ding.worker import BaseLearner, InteractionSerialEvaluator, BaseSerialCommander, create_buffer, \
create_serial_collector
from ding.config import read_config, compile_config
from ding.policy import create_policy
from ding.utils import set_pkg_seed
from .utils import random_collect
def serial_pipeline_sqil(
input_cfg: Union[str, Tuple[dict, dict]],
expert_cfg: Union[str, Tuple[dict, dict]],
seed: int = 0,
env_setting: Optional[List[Any]] = None,
model: Optional[torch.nn.Module] = None,
expert_model: Optional[torch.nn.Module] = None,
max_train_iter: Optional[int] = int(1e10),
max_env_step: Optional[int] = int(1e10),
) -> 'Policy': # noqa
"""
Overview:
Serial pipeline sqil entry: we create this serial pipeline in order to\
implement SQIL in DI-engine. For now, we support the following envs\
Cartpole, Lunarlander, Pong, Spaceinvader, Qbert. The demonstration\
data come from the expert model. We use a well-trained model to \
generate demonstration data online
Arguments:
- input_cfg (:obj:`Union[str, Tuple[dict, dict]]`): Config in dict type. \
``str`` type means config file path. \
``Tuple[dict, dict]`` type means [user_config, create_cfg].
- seed (:obj:`int`): Random seed.
- env_setting (:obj:`Optional[List[Any]]`): A list with 3 elements: \
``BaseEnv`` subclass, collector env config, and evaluator env config.
- model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.
- expert_model (:obj:`Optional[torch.nn.Module]`): Instance of torch.nn.Module.\
The default model is DQN(**cfg.policy.model)
- max_train_iter (:obj:`Optional[int]`): Maximum policy update iterations in training.
- max_env_step (:obj:`Optional[int]`): Maximum collected environment interaction steps.
Returns:
- policy (:obj:`Policy`): Converged policy.
"""
if isinstance(input_cfg, str):
cfg, create_cfg = read_config(input_cfg)
expert_cfg, expert_create_cfg = read_config(expert_cfg)
else:
cfg, create_cfg = deepcopy(input_cfg)
expert_cfg, expert_create_cfg = expert_cfg
create_cfg.policy.type = create_cfg.policy.type + '_command'
expert_create_cfg.policy.type = expert_create_cfg.policy.type + '_command'
env_fn = None if env_setting is None else env_setting[0]
cfg = compile_config(cfg, seed=seed, env=env_fn, auto=True, create_cfg=create_cfg, save_cfg=True)
expert_cfg = compile_config(
expert_cfg, seed=seed, env=env_fn, auto=True, create_cfg=expert_create_cfg, save_cfg=True
)
# expert config must have the same `n_sample`. The line below ensure we do not need to modify the expert configs
expert_cfg.policy.collect.n_sample = cfg.policy.collect.n_sample
# Create main components: env, policy
if env_setting is None:
env_fn, collector_env_cfg, evaluator_env_cfg = get_vec_env_setting(cfg.env)
else:
env_fn, collector_env_cfg, evaluator_env_cfg = env_setting
collector_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg])
expert_collector_env = create_env_manager(
expert_cfg.env.manager, [partial(env_fn, cfg=c) for c in collector_env_cfg]
)
evaluator_env = create_env_manager(cfg.env.manager, [partial(env_fn, cfg=c) for c in evaluator_env_cfg])
expert_collector_env.seed(cfg.seed)
collector_env.seed(cfg.seed)
evaluator_env.seed(cfg.seed, dynamic_seed=False)
expert_policy = create_policy(expert_cfg.policy, model=expert_model, enable_field=['collect', 'command'])
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
policy = create_policy(cfg.policy, model=model, enable_field=['learn', 'collect', 'eval', 'command'])
expert_policy.collect_mode.load_state_dict(torch.load(cfg.policy.collect.model_path, map_location='cpu'))
# Create worker components: learner, collector, evaluator, replay buffer, commander.
tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)
collector = create_serial_collector(
cfg.policy.collect.collector,
env=collector_env,
policy=policy.collect_mode,
tb_logger=tb_logger,
exp_name=cfg.exp_name
)
expert_collector = create_serial_collector(
expert_cfg.policy.collect.collector,
env=expert_collector_env,
policy=expert_policy.collect_mode,
tb_logger=tb_logger,
exp_name=expert_cfg.exp_name
)
evaluator = InteractionSerialEvaluator(
cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
)
replay_buffer = create_buffer(cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name)
expert_buffer = create_buffer(expert_cfg.policy.other.replay_buffer, tb_logger=tb_logger, exp_name=cfg.exp_name)
commander = BaseSerialCommander(
cfg.policy.other.commander, learner, collector, evaluator, replay_buffer, policy.command_mode
)
expert_commander = BaseSerialCommander(
expert_cfg.policy.other.commander, learner, expert_collector, evaluator, replay_buffer,
expert_policy.command_mode
) # we create this to avoid the issue of eps, this is an issue due to the sample collector part.
expert_collect_kwargs = expert_commander.step()
if 'eps' in expert_collect_kwargs:
expert_collect_kwargs['eps'] = -1
# ==========
# Main loop
# ==========
# Learner's before_run hook.
learner.call_hook('before_run')
# Accumulate plenty of data at the beginning of training.
if cfg.policy.get('random_collect_size', 0) > 0:
random_collect(cfg.policy, policy, collector, collector_env, commander, replay_buffer)
if cfg.policy.get('expert_random_collect_size', 0) > 0:
random_collect(
expert_cfg.policy, expert_policy, expert_collector, expert_collector_env, expert_commander, expert_buffer
)
while True:
collect_kwargs = commander.step()
# Evaluate policy performance
if evaluator.should_eval(learner.train_iter):
stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep)
if stop:
break
# Collect data by default config n_sample/n_episode
new_data = collector.collect(train_iter=learner.train_iter, policy_kwargs=collect_kwargs)
expert_data = expert_collector.collect(
train_iter=learner.train_iter, policy_kwargs=expert_collect_kwargs
) # policy_kwargs={'eps': -1}
for i in range(len(new_data)):
device_1 = new_data[i]['obs'].device
device_2 = expert_data[i]['obs'].device
new_data[i]['reward'] = torch.zeros(cfg.policy.nstep).to(device_1)
expert_data[i]['reward'] = torch.ones(cfg.policy.nstep).to(device_2)
replay_buffer.push(new_data, cur_collector_envstep=collector.envstep)
expert_buffer.push(expert_data, cur_collector_envstep=collector.envstep)
# Learn policy from collected data
for i in range(cfg.policy.learn.update_per_collect):
# Learner will train ``update_per_collect`` times in one iteration.
train_data = replay_buffer.sample((learner.policy.get_attribute('batch_size')) // 2, learner.train_iter)
train_data_demonstration = expert_buffer.sample(
(learner.policy.get_attribute('batch_size')) // 2, learner.train_iter
)
if train_data is None:
# It is possible that replay buffer's data count is too few to train ``update_per_collect`` times
logging.warning(
"Replay buffer's data can only train for {} steps. ".format(i) +
"You can modify data collect config, e.g. increasing n_sample, n_episode."
)
break
train_data = train_data + train_data_demonstration
learner.train(train_data, collector.envstep)
if learner.policy.get_attribute('priority'):
replay_buffer.update(learner.priority_info)
if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter:
break
# Learner's after_run hook.
learner.call_hook('after_run')
return policy
|