File size: 7,834 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
from copy import deepcopy
import pytest
import torch.nn.functional as F
from typing import Tuple, List, Dict, Any
import torch
from collections import namedtuple
import os
from ding.torch_utils import to_device
from ding.rl_utils import get_train_sample, get_nstep_return_data
from ding.entry import serial_pipeline_bc, collect_demo_data, serial_pipeline
from ding.policy import PPOOffPolicy, BehaviourCloningPolicy
from ding.policy.common_utils import default_preprocess_learn
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate, default_decollate
from dizoo.classic_control.cartpole.config import cartpole_dqn_config, cartpole_dqn_create_config, \
cartpole_ppo_offpolicy_config, cartpole_ppo_offpolicy_create_config
from dizoo.classic_control.pendulum.config import pendulum_sac_config, pendulum_sac_create_config
@POLICY_REGISTRY.register('ppo_bc')
class PPOILPolicy(PPOOffPolicy):
def _forward_learn(self, data: dict) -> dict:
data = default_preprocess_learn(data, ignore_done=self._cfg.learn.get('ignore_done', False), use_nstep=False)
self._learn_model.train()
output = self._learn_model.forward(data['obs'], mode='compute_actor_critic')
value_loss = F.mse_loss(output['value'], data['value'])
policy_loss = F.smooth_l1_loss(output['logit'], data['logit'])
total_loss = value_loss + policy_loss
self._optimizer.zero_grad()
total_loss.backward()
self._optimizer.step()
return {
'cur_lr': self._optimizer.defaults['lr'],
'total_loss': total_loss.item(),
'policy_loss': policy_loss.item(),
'value_loss': value_loss.item(),
}
def _forward_eval(self, data):
if isinstance(data, dict):
data_id = list(data.keys())
data = default_collate(list(data.values()))
o = default_decollate(self._eval_model.forward(data, mode='compute_actor'))
return {i: d for i, d in zip(data_id, o)}
return self._model(data, mode='compute_actor')
def _monitor_vars_learn(self) -> list:
return super()._monitor_vars_learn() + ['policy_loss', 'value_loss']
@pytest.mark.unittest
def test_serial_pipeline_bc_ppo():
# train expert policy
train_config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)]
train_config[0].exp_name = 'test_serial_pipeline_bc_ppo'
expert_policy = serial_pipeline(train_config, seed=0)
# collect expert demo data
collect_count = 10000
expert_data_path = 'expert_data_ppo_bc.pkl'
state_dict = expert_policy.collect_mode.state_dict()
collect_config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)]
collect_config[0].exp_name = 'test_serial_pipeline_bc_ppo_collect'
collect_demo_data(
collect_config, seed=0, state_dict=state_dict, expert_data_path=expert_data_path, collect_count=collect_count
)
# il training 1
il_config = [deepcopy(cartpole_ppo_offpolicy_config), deepcopy(cartpole_ppo_offpolicy_create_config)]
il_config[0].policy.eval.evaluator.multi_gpu = False
il_config[0].policy.learn.train_epoch = 20
il_config[1].policy.type = 'ppo_bc'
il_config[0].policy.continuous = False
il_config[0].exp_name = 'test_serial_pipeline_bc_ppo_il'
_, converge_stop_flag = serial_pipeline_bc(il_config, seed=314, data_path=expert_data_path)
assert converge_stop_flag
os.popen('rm -rf ' + expert_data_path)
@POLICY_REGISTRY.register('dqn_bc')
class DQNILPolicy(BehaviourCloningPolicy):
def _forward_learn(self, data: dict) -> dict:
return super()._forward_learn(data)
def _forward_collect(self, data: dict, eps: float):
data_id = list(data.keys())
data = default_collate(list(data.values()))
if self._cuda:
data = to_device(data, self._device)
self._collect_model.eval()
with torch.no_grad():
output = self._collect_model.forward(data, eps=eps)
if self._cuda:
output = to_device(output, 'cpu')
output = default_decollate(output)
return {i: d for i, d in zip(data_id, output)}
def _process_transition(self, obs: Any, model_output: dict, timestep: namedtuple) -> Dict[str, Any]:
ret = super()._process_transition(obs, model_output, timestep)
ret['next_obs'] = timestep.obs
return ret
def _get_train_sample(self, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
super()._get_train_sample(data)
data = get_nstep_return_data(data, 1, gamma=0.99)
return get_train_sample(data, unroll_len=1)
def _forward_eval(self, data: dict) -> dict:
if isinstance(data, dict):
data_id = list(data.keys())
data = default_collate(list(data.values()))
o = default_decollate(self._eval_model.forward(data))
return {i: d for i, d in zip(data_id, o)}
return self._model(data)
def default_model(self) -> Tuple[str, List[str]]:
return 'dqn', ['ding.model.template.q_learning']
@pytest.mark.unittest
def test_serial_pipeline_bc_dqn():
# train expert policy
train_config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)]
expert_policy = serial_pipeline(train_config, seed=0)
# collect expert demo data
collect_count = 10000
expert_data_path = 'expert_data_dqn.pkl'
state_dict = expert_policy.collect_mode.state_dict()
collect_config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)]
collect_config[1].policy.type = 'dqn_bc'
collect_config[0].policy.continuous = False
collect_config[0].policy.other.eps = 0
collect_demo_data(
collect_config, seed=0, state_dict=state_dict, expert_data_path=expert_data_path, collect_count=collect_count
)
# il training 2
il_config = [deepcopy(cartpole_dqn_config), deepcopy(cartpole_dqn_create_config)]
il_config[0].policy.learn.train_epoch = 15
il_config[1].policy.type = 'dqn_bc'
il_config[0].policy.continuous = False
il_config[0].env.stop_value = 50
il_config[0].policy.eval.evaluator.multi_gpu = False
_, converge_stop_flag = serial_pipeline_bc(il_config, seed=314, data_path=expert_data_path)
assert converge_stop_flag
os.popen('rm -rf ' + expert_data_path)
@pytest.mark.unittest
def test_serial_pipeline_bc_sac():
# train expert policy
train_config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)]
expert_policy = serial_pipeline(train_config, seed=0, max_train_iter=10)
# collect expert demo data
collect_count = 10000
expert_data_path = 'expert_data_sac.pkl'
state_dict = expert_policy.collect_mode.state_dict()
collect_config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)]
collect_demo_data(
collect_config, seed=0, state_dict=state_dict, expert_data_path=expert_data_path, collect_count=collect_count
)
# il training 2
il_config = [deepcopy(pendulum_sac_config), deepcopy(pendulum_sac_create_config)]
il_config[0].policy.learn.train_epoch = 15
il_config[1].policy.type = 'bc'
il_config[0].policy.continuous = True
il_config[0].env.stop_value = 50
il_config[0].policy.model = dict(
obs_shape=3,
action_shape=1,
action_space='regression',
actor_head_hidden_size=128,
)
il_config[0].policy.loss_type = 'l1_loss'
il_config[0].policy.learn.learning_rate = 1e-5
il_config[0].policy.eval.evaluator.multi_gpu = False
il_config[1].policy.type = 'bc'
_, converge_stop_flag = serial_pipeline_bc(il_config, seed=314, data_path=expert_data_path, max_iter=10)
os.popen('rm -rf ' + expert_data_path)
|