File size: 10,829 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import math
from functools import partial, lru_cache
from typing import Optional, Dict, Any
import numpy as np
import torch
from ding.compatibility import torch_ge_180
from ding.torch_utils import one_hot
num_first_one_hot = partial(one_hot, num_first=True)
def sqrt_one_hot(v: torch.Tensor, max_val: int) -> torch.Tensor:
"""
Overview:
Sqrt the input value ``v`` and transform it into one-hot.
Arguments:
- v (:obj:`torch.Tensor`): the value to be processed with `sqrt` and `one-hot`
- max_val (:obj:`int`): the input ``v``'s estimated max value, used to calculate one-hot bit number. \
``v`` would be clamped by (0, max_val).
Returns:
- ret (:obj:`torch.Tensor`): the value processed after `sqrt` and `one-hot`
"""
num = int(math.sqrt(max_val)) + 1
v = v.float()
v = torch.floor(torch.sqrt(torch.clamp(v, 0, max_val))).long()
return one_hot(v, num)
def div_one_hot(v: torch.Tensor, max_val: int, ratio: int) -> torch.Tensor:
"""
Overview:
Divide the input value ``v`` by ``ratio`` and transform it into one-hot.
Arguments:
- v (:obj:`torch.Tensor`): the value to be processed with `divide` and `one-hot`
- max_val (:obj:`int`): the input ``v``'s estimated max value, used to calculate one-hot bit number. \
``v`` would be clamped by (0, ``max_val``).
- ratio (:obj:`int`): input ``v`` would be divided by ``ratio``
Returns:
- ret (:obj:`torch.Tensor`): the value processed after `divide` and `one-hot`
"""
num = int(max_val / ratio) + 1
v = v.float()
v = torch.floor(torch.clamp(v, 0, max_val) / ratio).long()
return one_hot(v, num)
def div_func(inputs: torch.Tensor, other: float, unsqueeze_dim: int = 1):
"""
Overview:
Divide ``inputs`` by ``other`` and unsqueeze if needed.
Arguments:
- inputs (:obj:`torch.Tensor`): the value to be unsqueezed and divided
- other (:obj:`float`): input would be divided by ``other``
- unsqueeze_dim (:obj:`int`): the dim to implement unsqueeze
Returns:
- ret (:obj:`torch.Tensor`): the value processed after `unsqueeze` and `divide`
"""
inputs = inputs.float()
if unsqueeze_dim is not None:
inputs = inputs.unsqueeze(unsqueeze_dim)
return torch.div(inputs, other)
def clip_one_hot(v: torch.Tensor, num: int) -> torch.Tensor:
"""
Overview:
Clamp the input ``v`` in (0, num-1) and make one-hot mapping.
Arguments:
- v (:obj:`torch.Tensor`): the value to be processed with `clamp` and `one-hot`
- num (:obj:`int`): number of one-hot bits
Returns:
- ret (:obj:`torch.Tensor`): the value processed after `clamp` and `one-hot`
"""
v = v.clamp(0, num - 1)
return one_hot(v, num)
def reorder_one_hot(
v: torch.LongTensor,
dictionary: Dict[int, int],
num: int,
transform: Optional[np.ndarray] = None
) -> torch.Tensor:
"""
Overview:
Reorder each value in input ``v`` according to reorder dict ``dictionary``, then make one-hot mapping
Arguments:
- v (:obj:`torch.LongTensor`): the original value to be processed with `reorder` and `one-hot`
- dictionary (:obj:`Dict[int, int]`): a reorder lookup dict, \
map original value to new reordered index starting from 0
- num (:obj:`int`): number of one-hot bits
- transform (:obj:`int`): an array to firstly transform the original action to general action
Returns:
- ret (:obj:`torch.Tensor`): one-hot data indicating reordered index
"""
assert (len(v.shape) == 1)
assert (isinstance(v, torch.Tensor))
new_v = torch.zeros_like(v)
for idx in range(v.shape[0]):
if transform is None:
val = v[idx].item()
else:
val = transform[v[idx].item()]
new_v[idx] = dictionary[val]
return one_hot(new_v, num)
def reorder_one_hot_array(
v: torch.LongTensor, array: np.ndarray, num: int, transform: Optional[np.ndarray] = None
) -> torch.Tensor:
"""
Overview:
Reorder each value in input ``v`` according to reorder dict ``dictionary``, then make one-hot mapping.
The difference between this function and ``reorder_one_hot`` is
whether the type of reorder lookup data structure is `np.ndarray` or `dict`.
Arguments:
- v (:obj:`torch.LongTensor`): the value to be processed with `reorder` and `one-hot`
- array (:obj:`np.ndarray`): a reorder lookup array, map original value to new reordered index starting from 0
- num (:obj:`int`): number of one-hot bits
- transform (:obj:`np.ndarray`): an array to firstly transform the original action to general action
Returns:
- ret (:obj:`torch.Tensor`): one-hot data indicating reordered index
"""
v = v.numpy()
if transform is None:
val = array[v]
else:
val = array[transform[v]]
return one_hot(torch.LongTensor(val), num)
def reorder_boolean_vector(
v: torch.LongTensor,
dictionary: Dict[int, int],
num: int,
transform: Optional[np.ndarray] = None
) -> torch.Tensor:
"""
Overview:
Reorder each value in input ``v`` to new index according to reorder dict ``dictionary``,
then set corresponding position in return tensor to 1.
Arguments:
- v (:obj:`torch.LongTensor`): the value to be processed with `reorder`
- dictionary (:obj:`Dict[int, int]`): a reorder lookup dict, \
map original value to new reordered index starting from 0
- num (:obj:`int`): total number of items, should equals to max index + 1
- transform (:obj:`np.ndarray`): an array to firstly transform the original action to general action
Returns:
- ret (:obj:`torch.Tensor`): boolean data containing only 0 and 1, \
indicating whether corresponding original value exists in input ``v``
"""
ret = torch.zeros(num)
for item in v:
try:
if transform is None:
val = item.item()
else:
val = transform[item.item()]
idx = dictionary[val]
except KeyError as e:
# print(dictionary)
raise KeyError('{}_{}_'.format(num, e))
ret[idx] = 1
return ret
@lru_cache(maxsize=32)
def get_to_and(num_bits: int) -> np.ndarray:
"""
Overview:
Get an np.ndarray with ``num_bits`` elements, each equals to :math:`2^n` (n decreases from num_bits-1 to 0).
Used by ``batch_binary_encode`` to make bit-wise `and`.
Arguments:
- num_bits (:obj:`int`): length of the generating array
Returns:
- to_and (:obj:`np.ndarray`): an array with ``num_bits`` elements, \
each equals to :math:`2^n` (n decreases from num_bits-1 to 0)
"""
return 2 ** np.arange(num_bits - 1, -1, -1).reshape([1, num_bits])
def batch_binary_encode(x: torch.Tensor, bit_num: int) -> torch.Tensor:
"""
Overview:
Big endian binary encode ``x`` to float tensor
Arguments:
- x (:obj:`torch.Tensor`): the value to be unsqueezed and divided
- bit_num (:obj:`int`): number of bits, should satisfy :math:`2^{bit num} > max(x)`
Example:
>>> batch_binary_encode(torch.tensor([131,71]), 10)
tensor([[0., 0., 1., 0., 0., 0., 0., 0., 1., 1.],
[0., 0., 0., 1., 0., 0., 0., 1., 1., 1.]])
Returns:
- ret (:obj:`torch.Tensor`): the binary encoded tensor, containing only `0` and `1`
"""
x = x.numpy()
xshape = list(x.shape)
x = x.reshape([-1, 1])
to_and = get_to_and(bit_num)
return torch.FloatTensor((x & to_and).astype(bool).astype(float).reshape(xshape + [bit_num]))
def compute_denominator(x: torch.Tensor) -> torch.Tensor:
"""
Overview:
Compute the denominator used in ``get_postion_vector``. \
Divide 1 at the last step, so you can use it as an multiplier.
Arguments:
- x (:obj:`torch.Tensor`): Input tensor, which is generated from torch.arange(0, d_model).
Returns:
- ret (:obj:`torch.Tensor`): Denominator result tensor.
"""
if torch_ge_180():
x = torch.div(x, 2, rounding_mode='trunc') * 2
else:
x = torch.div(x, 2) * 2
x = torch.div(x, 64.)
x = torch.pow(10000., x)
x = torch.div(1., x)
return x
def get_postion_vector(x: list) -> torch.Tensor:
"""
Overview:
Get position embedding used in `Transformer`, even and odd :math:`\alpha` are stored in ``POSITION_ARRAY``
Arguments:
- x (:obj:`list`): original position index, whose length should be 32
Returns:
- v (:obj:`torch.Tensor`): position embedding tensor in 64 dims
"""
# TODO use lru_cache to optimize it
POSITION_ARRAY = compute_denominator(torch.arange(0, 64, dtype=torch.float)) # d_model = 64
v = torch.zeros(64, dtype=torch.float)
x = torch.FloatTensor(x)
v[0::2] = torch.sin(x * POSITION_ARRAY[0::2]) # even
v[1::2] = torch.cos(x * POSITION_ARRAY[1::2]) # odd
return v
def affine_transform(
data: Any,
action_clip: Optional[bool] = True,
alpha: Optional[float] = None,
beta: Optional[float] = None,
min_val: Optional[float] = None,
max_val: Optional[float] = None
) -> Any:
"""
Overview:
do affine transform for data in range [-1, 1], :math:`\alpha \times data + \beta`
Arguments:
- data (:obj:`Any`): the input data
- action_clip (:obj:`bool`): whether to do action clip operation ([-1, 1])
- alpha (:obj:`float`): affine transform weight
- beta (:obj:`float`): affine transform bias
- min_val (:obj:`float`): min value, if `min_val` and `max_val` are indicated, scale input data\
to [min_val, max_val]
- max_val (:obj:`float`): max value
Returns:
- transformed_data (:obj:`Any`): affine transformed data
"""
if action_clip:
data = np.clip(data, -1, 1)
if min_val is not None:
assert max_val is not None
alpha = (max_val - min_val) / 2
beta = (max_val + min_val) / 2
assert alpha is not None
beta = beta if beta is not None else 0.
return data * alpha + beta
def save_frames_as_gif(frames: list, path: str) -> None:
"""
Overview:
save frames as gif to a specified path.
Arguments:
- frames (:obj:`List`): list of frames
- path (:obj:`str`): the path to save gif
"""
try:
import imageio
except ImportError:
from ditk import logging
import sys
logging.warning("Please install imageio first.")
sys.exit(1)
imageio.mimsave(path, frames, fps=20)
|