File size: 15,551 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
from typing import List, Optional, Union, Dict
from easydict import EasyDict
import gym
import gymnasium
import copy
import numpy as np
import treetensor.numpy as tnp

from ding.envs.common.common_function import affine_transform
from ding.envs.env_wrappers import create_env_wrapper
from ding.torch_utils import to_ndarray
from ding.utils import CloudPickleWrapper
from .base_env import BaseEnv, BaseEnvTimestep
from .default_wrapper import get_default_wrappers


class DingEnvWrapper(BaseEnv):
    """
     Overview:
         This is a wrapper for the BaseEnv class, used to provide a consistent environment interface.
     Interfaces:
         __init__, reset, step, close, seed, random_action, _wrap_env, __repr__, create_collector_env_cfg,
         create_evaluator_env_cfg, enable_save_replay, observation_space, action_space, reward_space, clone
     """

    def __init__(self, env: gym.Env = None, cfg: dict = None, seed_api: bool = True, caller: str = 'collector') -> None:
        """
        Overview:
            Initialize the DingEnvWrapper. Either an environment instance or a config to create the environment \
            instance should be passed in. For the former, i.e., an environment instance: The `env` parameter must not \
            be `None`, but should be the instance. It does not support subprocess environment manager. Thus, it is \
            usually used in simple environments. For the latter, i.e., a config to create an environment instance: \
            The `cfg` parameter must contain `env_id`.
        Arguments:
            - env (:obj:`gym.Env`): An environment instance to be wrapped.
            - cfg (:obj:`dict`): The configuration dictionary to create an environment instance.
            - seed_api (:obj:`bool`): Whether to use seed API. Defaults to True.
            - caller (:obj:`str`): A string representing the caller of this method, including ``collector`` or \
                ``evaluator``. Different caller may need different wrappers. Default is 'collector'.
        """
        self._env = None
        self._raw_env = env
        self._cfg = cfg
        self._seed_api = seed_api  # some env may disable `env.seed` api
        self._caller = caller
        if self._cfg is None:
            self._cfg = {}
        self._cfg = EasyDict(self._cfg)
        if 'act_scale' not in self._cfg:
            self._cfg.act_scale = False
        if 'rew_clip' not in self._cfg:
            self._cfg.rew_clip = False
        if 'env_wrapper' not in self._cfg:
            self._cfg.env_wrapper = 'default'
        if 'env_id' not in self._cfg:
            self._cfg.env_id = None
        if env is not None:
            self._env = env
            self._wrap_env(caller)
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._action_space.seed(0)  # default seed
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        else:
            assert 'env_id' in self._cfg
            self._init_flag = False
            self._observation_space = None
            self._action_space = None
            self._reward_space = None
        # Only if user specifies the replay_path, will the video be saved. So its inital value is None.
        self._replay_path = None

    # override
    def reset(self) -> np.ndarray:
        """
        Overview:
            Resets the state of the environment. If the environment is not initialized, it will be created first.
        Returns:
            - obs (:obj:`Dict`): The new observation after reset.
        """
        if not self._init_flag:
            self._env = gym.make(self._cfg.env_id)
            self._wrap_env(self._caller)
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if self._replay_path is not None:
            self._env = gym.wrappers.RecordVideo(
                self._env,
                video_folder=self._replay_path,
                episode_trigger=lambda episode_id: True,
                name_prefix='rl-video-{}'.format(id(self))
            )
            self._replay_path = None
        if isinstance(self._env, gym.Env):
            if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
                np_seed = 100 * np.random.randint(1, 1000)
                if self._seed_api:
                    self._env.seed(self._seed + np_seed)
                self._action_space.seed(self._seed + np_seed)
            elif hasattr(self, '_seed'):
                if self._seed_api:
                    self._env.seed(self._seed)
                self._action_space.seed(self._seed)
            obs = self._env.reset()
        elif isinstance(self._env, gymnasium.Env):
            if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
                np_seed = 100 * np.random.randint(1, 1000)
                self._action_space.seed(self._seed + np_seed)
                obs = self._env.reset(seed=self._seed + np_seed)
            elif hasattr(self, '_seed'):
                self._action_space.seed(self._seed)
                obs = self._env.reset(seed=self._seed)
            else:
                obs = self._env.reset()
        else:
            raise RuntimeError("not support env type: {}".format(type(self._env)))
        if self.observation_space.dtype == np.float32:
            obs = to_ndarray(obs, dtype=np.float32)
        else:
            obs = to_ndarray(obs)
        return obs

    # override
    def close(self) -> None:
        """
        Overview:
            Clean up the environment by closing and deleting it.
            This method should be called when the environment is no longer needed.
            Failing to call this method can lead to memory leaks.
        """
        try:
            self._env.close()
            del self._env
        except:  # noqa
            pass

    # override
    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        """
        Overview:
            Set the seed for the environment.
        Arguments:
            - seed (:obj:`int`): The seed to set.
            - dynamic_seed (:obj:`bool`): Whether to use dynamic seed, default is True.
        """
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    # override
    def step(self, action: Union[np.int64, np.ndarray]) -> BaseEnvTimestep:
        """
        Overview:
            Execute the given action in the environment, and return the timestep (observation, reward, done, info).
        Arguments:
            - action (:obj:`Union[np.int64, np.ndarray]`): The action to execute in the environment.
        Returns:
            - timestep (:obj:`BaseEnvTimestep`): The timestep after the action execution.
        """
        action = self._judge_action_type(action)
        if self._cfg.act_scale:
            action = affine_transform(action, min_val=self._env.action_space.low, max_val=self._env.action_space.high)
        obs, rew, done, info = self._env.step(action)
        if self._cfg.rew_clip:
            rew = max(-10, rew)
        rew = np.float32(rew)
        if self.observation_space.dtype == np.float32:
            obs = to_ndarray(obs, dtype=np.float32)
        else:
            obs = to_ndarray(obs)
        rew = to_ndarray([rew], np.float32)
        return BaseEnvTimestep(obs, rew, done, info)

    def _judge_action_type(self, action: Union[np.ndarray, dict]) -> Union[np.ndarray, dict]:
        """
        Overview:
            Ensure the action taken by the agent is of the correct type.
            This method is used to standardize different action types to a common format.
        Arguments:
            - action (Union[np.ndarray, dict]): The action taken by the agent.
        Returns:
            - action (Union[np.ndarray, dict]): The formatted action.
        """
        if isinstance(action, int):
            return action
        elif isinstance(action, np.int64):
            return int(action)
        elif isinstance(action, np.ndarray):
            if action.shape == ():
                action = action.item()
            elif action.shape == (1, ) and action.dtype == np.int64:
                action = action.item()
            return action
        elif isinstance(action, dict):
            for k, v in action.items():
                action[k] = self._judge_action_type(v)
            return action
        elif isinstance(action, tnp.ndarray):
            return self._judge_action_type(action.json())
        else:
            raise TypeError(
                '`action` should be either int/np.ndarray or dict of int/np.ndarray, but get {}: {}'.format(
                    type(action), action
                )
            )

    def random_action(self) -> np.ndarray:
        """
        Overview:
            Return a random action from the action space of the environment.
        Returns:
            - action (:obj:`np.ndarray`): The random action.
        """
        random_action = self.action_space.sample()
        if isinstance(random_action, np.ndarray):
            pass
        elif isinstance(random_action, int):
            random_action = to_ndarray([random_action], dtype=np.int64)
        elif isinstance(random_action, dict):
            random_action = to_ndarray(random_action)
        else:
            raise TypeError(
                '`random_action` should be either int/np.ndarray or dict of int/np.ndarray, but get {}: {}'.format(
                    type(random_action), random_action
                )
            )
        return random_action

    def _wrap_env(self, caller: str = 'collector') -> None:
        """
        Overview:
            Wrap the environment according to the configuration.
        Arguments:
            - caller (:obj:`str`): The caller of the environment, including ``collector`` or ``evaluator``. \
                Different caller may need different wrappers. Default is 'collector'.
        """
        # wrapper_cfgs: Union[str, List]
        wrapper_cfgs = self._cfg.env_wrapper
        if isinstance(wrapper_cfgs, str):
            wrapper_cfgs = get_default_wrappers(wrapper_cfgs, self._cfg.env_id, caller)
        # self._wrapper_cfgs: List[Union[Callable, Dict]]
        self._wrapper_cfgs = wrapper_cfgs
        for wrapper in self._wrapper_cfgs:
            # wrapper: Union[Callable, Dict]
            if isinstance(wrapper, Dict):
                self._env = create_env_wrapper(self._env, wrapper)
            else:  # Callable, such as lambda anonymous function
                self._env = wrapper(self._env)

    def __repr__(self) -> str:
        """
        Overview:
            Return the string representation of the instance.
        Returns:
            - str (:obj:`str`): The string representation of the instance.
        """
        return "DI-engine Env({}), generated by DingEnvWrapper".format(self._cfg.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        """
        Overview:
            Create a list of environment configuration for collectors based on the input configuration.
        Arguments:
            - cfg (:obj:`dict`): The input configuration dictionary.
        Returns:
            - env_cfgs (:obj:`List[dict]`): The list of environment configurations for collectors.
        """
        actor_env_num = cfg.pop('collector_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = True
        return [cfg for _ in range(actor_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        """
        Overview:
            Create a list of environment configuration for evaluators based on the input configuration.
        Arguments:
            - cfg (:obj:`dict`): The input configuration dictionary.
        Returns:
            - env_cfgs (:obj:`List[dict]`): The list of environment configurations for evaluators.
        """
        evaluator_env_num = cfg.pop('evaluator_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.is_train = False
        return [cfg for _ in range(evaluator_env_num)]

    def enable_save_replay(self, replay_path: Optional[str] = None) -> None:
        """
        Overview:
            Enable the save replay functionality. The replay will be saved at the specified path.
        Arguments:
            - replay_path (:obj:`Optional[str]`): The path to save the replay, default is None.
        """
        if replay_path is None:
            replay_path = './video'
        self._replay_path = replay_path

    @property
    def observation_space(self) -> gym.spaces.Space:
        """
        Overview:
            Return the observation space of the wrapped environment.
            The observation space represents the range and shape of possible observations
            that the environment can provide to the agent.
        Note:
            If the data type of the observation space is float64, it's converted to float32
            for better compatibility with most machine learning libraries.
        Returns:
            - observation_space (gym.spaces.Space): The observation space of the environment.
        """
        if self._observation_space.dtype == np.float64:
            self._observation_space.dtype = np.float32
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        """
        Overview:
            Return the action space of the wrapped environment.
            The action space represents the range and shape of possible actions
            that the agent can take in the environment.
        Returns:
            - action_space (gym.spaces.Space): The action space of the environment.
        """
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        """
        Overview:
            Return the reward space of the wrapped environment.
            The reward space represents the range and shape of possible rewards
            that the agent can receive as a result of its actions.
        Returns:
            - reward_space (gym.spaces.Space): The reward space of the environment.
        """
        return self._reward_space

    def clone(self, caller: str = 'collector') -> BaseEnv:
        """
        Overview:
            Clone the current environment wrapper, creating a new environment with the same settings.
        Arguments:
            - caller (str): A string representing the caller of this method, including ``collector`` or ``evaluator``. \
                Different caller may need different wrappers. Default is 'collector'.
        Returns:
            - DingEnvWrapper: A new instance of the environment with the same settings.
        """
        try:
            spec = copy.deepcopy(self._raw_env.spec)
            raw_env = CloudPickleWrapper(self._raw_env)
            raw_env = copy.deepcopy(raw_env).data
            raw_env.__setattr__('spec', spec)
        except Exception:
            raw_env = self._raw_env
        return DingEnvWrapper(raw_env, self._cfg, self._seed_api, caller)