File size: 24,099 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
from collections import defaultdict
import math
import queue
from time import sleep, time
import gym
from ding.framework import Supervisor
from typing import TYPE_CHECKING, Any, List, Union, Dict, Optional, Callable
from ding.framework.supervisor import ChildType, RecvPayload, SendPayload
from ding.utils import make_key_as_identifier
from ditk import logging
from ding.data import ShmBufferContainer
import enum
import treetensor.numpy as tnp
import numbers
if TYPE_CHECKING:
from gym.spaces import Space
class EnvState(enum.IntEnum):
"""
VOID -> RUN -> DONE
"""
VOID = 0
INIT = 1
RUN = 2
RESET = 3
DONE = 4
ERROR = 5
NEED_RESET = 6
class EnvRetryType(str, enum.Enum):
RESET = "reset"
RENEW = "renew"
class EnvSupervisor(Supervisor):
"""
Manage multiple envs with supervisor.
New features (compared to env manager):
- Consistent interface in multi-process and multi-threaded mode.
- Add asynchronous features and recommend using asynchronous methods.
- Reset is performed after an error is encountered in the step method.
Breaking changes (compared to env manager):
- Without some states.
"""
def __init__(
self,
type_: ChildType = ChildType.PROCESS,
env_fn: List[Callable] = None,
retry_type: EnvRetryType = EnvRetryType.RESET,
max_try: Optional[int] = None,
max_retry: Optional[int] = None,
auto_reset: bool = True,
reset_timeout: Optional[int] = None,
step_timeout: Optional[int] = None,
retry_waiting_time: Optional[int] = None,
episode_num: int = float("inf"),
shared_memory: bool = True,
copy_on_get: bool = True,
**kwargs
) -> None:
"""
Overview:
Supervisor that manage a group of envs.
Arguments:
- type_ (:obj:`ChildType`): Type of child process.
- env_fn (:obj:`List[Callable]`): The function to create environment
- retry_type (:obj:`EnvRetryType`): Retry reset or renew env.
- max_try (:obj:`EasyDict`): Max try times for reset or step action.
- max_retry (:obj:`Optional[int]`): Alias of max_try.
- auto_reset (:obj:`bool`): Auto reset env if reach done.
- reset_timeout (:obj:`Optional[int]`): Timeout in seconds for reset.
- step_timeout (:obj:`Optional[int]`): Timeout in seconds for step.
- retry_waiting_time (:obj:`Optional[float]`): Wait time on each retry.
- shared_memory (:obj:`bool`): Use shared memory in multiprocessing.
- copy_on_get (:obj:`bool`): Use copy on get in multiprocessing.
"""
if kwargs:
logging.warning("Unknown parameters on env supervisor: {}".format(kwargs))
super().__init__(type_=type_)
if type_ is not ChildType.PROCESS and (shared_memory or copy_on_get):
logging.warning("shared_memory and copy_on_get only works in process mode.")
self._shared_memory = type_ is ChildType.PROCESS and shared_memory
self._copy_on_get = type_ is ChildType.PROCESS and copy_on_get
self._env_fn = env_fn
self._create_env_ref()
self._obs_buffers = None
if env_fn:
if self._shared_memory:
obs_space = self._observation_space
if isinstance(obs_space, gym.spaces.Dict):
# For multi_agent case, such as multiagent_mujoco and petting_zoo mpe.
# Now only for the case that each agent in the team have the same obs structure
# and corresponding shape.
shape = {k: v.shape for k, v in obs_space.spaces.items()}
dtype = {k: v.dtype for k, v in obs_space.spaces.items()}
else:
shape = obs_space.shape
dtype = obs_space.dtype
self._obs_buffers = {
env_id: ShmBufferContainer(dtype, shape, copy_on_get=self._copy_on_get)
for env_id in range(len(self._env_fn))
}
for env_init in env_fn:
self.register(env_init, shm_buffer=self._obs_buffers, shm_callback=self._shm_callback)
else:
for env_init in env_fn:
self.register(env_init)
self._retry_type = retry_type
self._auto_reset = auto_reset
if max_retry:
logging.warning("The `max_retry` is going to be deprecated, use `max_try` instead!")
self._max_try = max_try or max_retry or 1
self._reset_timeout = reset_timeout
self._step_timeout = step_timeout
self._retry_waiting_time = retry_waiting_time
self._env_replay_path = None
self._episode_num = episode_num
self._init_states()
def _init_states(self):
self._env_seed = {}
self._env_dynamic_seed = None
self._env_replay_path = None
self._env_states = {}
self._reset_param = {}
self._ready_obs = {}
self._env_episode_count = {i: 0 for i in range(self.env_num)}
self._retry_times = defaultdict(lambda: 0)
self._last_called = defaultdict(lambda: {"step": math.inf, "reset": math.inf})
def _shm_callback(self, payload: RecvPayload, obs_buffers: Any):
"""
Overview:
This method will be called in child worker, so we can put large data into shared memory
and replace the original payload data to none, then reduce the serialization/deserialization cost.
"""
if payload.method == "reset" and payload.data is not None:
obs_buffers[payload.proc_id].fill(payload.data)
payload.data = None
elif payload.method == "step" and payload.data is not None:
obs_buffers[payload.proc_id].fill(payload.data.obs)
payload.data._replace(obs=None)
def _create_env_ref(self):
# env_ref is used to acquire some common attributes of env, like obs_shape and act_shape
self._env_ref = self._env_fn[0]()
self._env_ref.reset()
self._observation_space = self._env_ref.observation_space
self._action_space = self._env_ref.action_space
self._reward_space = self._env_ref.reward_space
self._env_ref.close()
def step(self, actions: Union[Dict[int, List[Any]], List[Any]], block: bool = True) -> Optional[List[tnp.ndarray]]:
"""
Overview:
Execute env step according to input actions. And reset an env if done.
Arguments:
- actions (:obj:`List[tnp.ndarray]`): Actions came from outer caller like policy, \
in structure of {env_id: actions}.
- block (:obj:`bool`): If block, return timesteps, else return none.
Returns:
- timesteps (:obj:`List[tnp.ndarray]`): Each timestep is a tnp.array with observation, reward, done, \
info, env_id.
"""
assert not self.closed, "Env supervisor has closed."
if isinstance(actions, List):
actions = {i: p for i, p in enumerate(actions)}
assert actions, "Action is empty!"
send_payloads = []
for env_id, act in actions.items():
payload = SendPayload(proc_id=env_id, method="step", args=[act])
send_payloads.append(payload)
self.send(payload)
if not block:
# Retrieve the data for these steps from the recv method
return
# Wait for all steps returns
recv_payloads = self.recv_all(
send_payloads, ignore_err=True, callback=self._recv_callback, timeout=self._step_timeout
)
return [payload.data for payload in recv_payloads]
def recv(self, ignore_err: bool = False) -> RecvPayload:
"""
Overview:
Wait for recv payload, this function will block the thread.
Arguments:
- ignore_err (:obj:`bool`): If ignore_err is true, payload with error object will be discarded.\
This option will not catch the exception.
Returns:
- recv_payload (:obj:`RecvPayload`): Recv payload.
"""
self._detect_timeout()
try:
payload = super().recv(ignore_err=True, timeout=0.1)
payload = self._recv_callback(payload=payload)
if payload.err:
return self.recv(ignore_err=ignore_err)
else:
return payload
except queue.Empty:
return self.recv(ignore_err=ignore_err)
def _detect_timeout(self):
"""
Overview:
Try to restart all timeout environments if detected timeout.
"""
for env_id in self._last_called:
if self._step_timeout and time() - self._last_called[env_id]["step"] > self._step_timeout:
payload = RecvPayload(
proc_id=env_id, method="step", err=TimeoutError("Step timeout on env {}".format(env_id))
)
self._recv_queue.put(payload)
continue
if self._reset_timeout and time() - self._last_called[env_id]["reset"] > self._reset_timeout:
payload = RecvPayload(
proc_id=env_id, method="reset", err=TimeoutError("Step timeout on env {}".format(env_id))
)
self._recv_queue.put(payload)
continue
@property
def env_num(self) -> int:
return len(self._children)
@property
def observation_space(self) -> 'Space':
return self._observation_space
@property
def action_space(self) -> 'Space':
return self._action_space
@property
def reward_space(self) -> 'Space':
return self._reward_space
@property
def ready_obs(self) -> tnp.array:
"""
Overview:
Get the ready (next) observation in ``tnp.array`` type, which is uniform for both async/sync scenarios.
Return:
- ready_obs (:obj:`tnp.array`): A stacked treenumpy-type observation data.
Example:
>>> obs = env_manager.ready_obs
>>> action = model(obs) # model input np obs and output np action
>>> timesteps = env_manager.step(action)
"""
active_env = [i for i, s in self._env_states.items() if s == EnvState.RUN]
active_env.sort()
obs = [self._ready_obs.get(i) for i in active_env]
if len(obs) == 0:
return tnp.array([])
return tnp.stack(obs)
@property
def ready_obs_id(self) -> List[int]:
return [i for i, s in self.env_states.items() if s == EnvState.RUN]
@property
def done(self) -> bool:
return all([s == EnvState.DONE for s in self.env_states.values()])
@property
def method_name_list(self) -> List[str]:
return ['reset', 'step', 'seed', 'close', 'enable_save_replay']
@property
def env_states(self) -> Dict[int, EnvState]:
return {env_id: self._env_states.get(env_id) or EnvState.VOID for env_id in range(self.env_num)}
def env_state_done(self, env_id: int) -> bool:
return self.env_states[env_id] == EnvState.DONE
def launch(self, reset_param: Optional[Dict] = None, block: bool = True) -> None:
"""
Overview:
Set up the environments and their parameters.
Arguments:
- reset_param (:obj:`Optional[Dict]`): Dict of reset parameters for each environment, key is the env_id, \
value is the cooresponding reset parameters.
- block (:obj:`block`): Whether will block the process and wait for reset states.
"""
assert self.closed, "Please first close the env supervisor before launch it"
if reset_param is not None:
assert len(reset_param) == self.env_num
self.start_link()
self._send_seed(self._env_seed, self._env_dynamic_seed, block=block)
self.reset(reset_param, block=block)
self._enable_env_replay()
def reset(self, reset_param: Optional[Dict[int, List[Any]]] = None, block: bool = True) -> None:
"""
Overview:
Reset an environment.
Arguments:
- reset_param (:obj:`Optional[Dict[int, List[Any]]]`): Dict of reset parameters for each environment, \
key is the env_id, value is the cooresponding reset parameters.
- block (:obj:`block`): Whether will block the process and wait for reset states.
"""
if not reset_param:
reset_param = {i: {} for i in range(self.env_num)}
elif isinstance(reset_param, List):
reset_param = {i: p for i, p in enumerate(reset_param)}
send_payloads = []
for env_id, kw_param in reset_param.items():
self._reset_param[env_id] = kw_param # For auto reset
send_payloads += self._reset(env_id, kw_param=kw_param)
if not block:
return
self.recv_all(send_payloads, ignore_err=True, callback=self._recv_callback, timeout=self._reset_timeout)
def _recv_callback(
self, payload: RecvPayload, remain_payloads: Optional[Dict[str, SendPayload]] = None
) -> RecvPayload:
"""
Overview:
The callback function for each received payload, within this method will modify the state of \
each environment, replace objects in shared memory, and determine if a retry is needed due to an error.
Arguments:
- payload (:obj:`RecvPayload`): The received payload.
- remain_payloads (:obj:`Optional[Dict[str, SendPayload]]`): The callback may be called many times \
until remain_payloads be cleared, you can append new payload into remain_payloads to call this \
callback recursively.
"""
self._set_shared_obs(payload=payload)
self.change_state(payload=payload)
if payload.method == "reset":
return self._recv_reset_callback(payload=payload, remain_payloads=remain_payloads)
elif payload.method == "step":
return self._recv_step_callback(payload=payload, remain_payloads=remain_payloads)
return payload
def _set_shared_obs(self, payload: RecvPayload):
if self._obs_buffers is None:
return
if payload.method == "reset" and payload.err is None:
payload.data = self._obs_buffers[payload.proc_id].get()
elif payload.method == "step" and payload.err is None:
payload.data._replace(obs=self._obs_buffers[payload.proc_id].get())
def _recv_reset_callback(
self, payload: RecvPayload, remain_payloads: Optional[Dict[str, SendPayload]] = None
) -> RecvPayload:
assert payload.method == "reset", "Recv error callback({}) in reset callback!".format(payload.method)
if remain_payloads is None:
remain_payloads = {}
env_id = payload.proc_id
if payload.err:
self._retry_times[env_id] += 1
if self._retry_times[env_id] > self._max_try - 1:
self.shutdown(5)
raise RuntimeError(
"Env {} reset has exceeded max_try({}), and the latest exception is: {}".format(
env_id, self._max_try, payload.err
)
)
if self._retry_waiting_time:
sleep(self._retry_waiting_time)
if self._retry_type == EnvRetryType.RENEW:
self._children[env_id].restart()
send_payloads = self._reset(env_id)
for p in send_payloads:
remain_payloads[p.req_id] = p
else:
self._retry_times[env_id] = 0
self._ready_obs[env_id] = payload.data
return payload
def _recv_step_callback(
self, payload: RecvPayload, remain_payloads: Optional[Dict[str, SendPayload]] = None
) -> RecvPayload:
assert payload.method == "step", "Recv error callback({}) in step callback!".format(payload.method)
if remain_payloads is None:
remain_payloads = {}
if payload.err:
send_payloads = self._reset(payload.proc_id)
for p in send_payloads:
remain_payloads[p.req_id] = p
info = {"abnormal": True, "err": payload.err}
payload.data = tnp.array(
{
'obs': None,
'reward': None,
'done': None,
'info': info,
'env_id': payload.proc_id
}
)
else:
obs, reward, done, info, *_ = payload.data
if done:
self._env_episode_count[payload.proc_id] += 1
if self._env_episode_count[payload.proc_id] < self._episode_num and self._auto_reset:
send_payloads = self._reset(payload.proc_id)
for p in send_payloads:
remain_payloads[p.req_id] = p
# make the type and content of key as similar as identifier,
# in order to call them as attribute (e.g. timestep.xxx), such as ``TimeLimit.truncated`` in cartpole info
info = make_key_as_identifier(info)
payload.data = tnp.array(
{
'obs': obs,
'reward': reward,
'done': done,
'info': info,
'env_id': payload.proc_id
}
)
self._ready_obs[payload.proc_id] = obs
return payload
def _reset(self, env_id: int, kw_param: Optional[Dict[str, Any]] = None) -> List[SendPayload]:
"""
Overview:
Reset an environment. This method does not wait for the result to be returned.
Arguments:
- env_id (:obj:`int`): Environment id.
- kw_param (:obj:`Optional[Dict[str, Any]]`): Reset parameters for the environment.
Returns:
- send_payloads (:obj:`List[SendPayload]`): The request payloads for seed and reset actions.
"""
assert not self.closed, "Env supervisor has closed."
send_payloads = []
kw_param = kw_param or self._reset_param[env_id]
if self._env_replay_path is not None and self.env_states[env_id] == EnvState.RUN:
logging.warning("Please don't reset an unfinished env when you enable save replay, we just skip it")
return send_payloads
# Reset env
payload = SendPayload(proc_id=env_id, method="reset", kwargs=kw_param)
send_payloads.append(payload)
self.send(payload)
return send_payloads
def _send_seed(self, env_seed: Dict[int, int], env_dynamic_seed: Optional[bool] = None, block: bool = True) -> None:
send_payloads = []
for env_id, seed in env_seed.items():
if seed is None:
continue
args = [seed]
if env_dynamic_seed is not None:
args.append(env_dynamic_seed)
payload = SendPayload(proc_id=env_id, method="seed", args=args)
send_payloads.append(payload)
self.send(payload)
if not block or not send_payloads:
return
self.recv_all(send_payloads, ignore_err=True, callback=self._recv_callback, timeout=self._reset_timeout)
def change_state(self, payload: RecvPayload):
self._last_called[payload.proc_id][payload.method] = math.inf # Have recevied
if payload.err:
self._env_states[payload.proc_id] = EnvState.ERROR
elif payload.method == "reset":
self._env_states[payload.proc_id] = EnvState.RUN
elif payload.method == "step":
if payload.data[2]:
self._env_states[payload.proc_id] = EnvState.DONE
def send(self, payload: SendPayload) -> None:
self._last_called[payload.proc_id][payload.method] = time()
return super().send(payload)
def seed(self, seed: Union[Dict[int, int], List[int], int], dynamic_seed: Optional[bool] = None) -> None:
"""
Overview:
Set the seed for each environment. The seed function will not be called until supervisor.launch \
was called.
Arguments:
- seed (:obj:`Union[Dict[int, int], List[int], int]`): List of seeds for each environment; \
Or one seed for the first environment and other seeds are generated automatically. \
Note that in threading mode, no matter how many seeds are given, only the last one will take effect. \
Because the execution in the thread is asynchronous, the results of each experiment \
are different even if a fixed seed is used.
- dynamic_seed (:obj:`Optional[bool]`): Dynamic seed is used in the training environment, \
trying to make the random seed of each episode different, they are all generated in the reset \
method by a random generator 100 * np.random.randint(1 , 1000) (but the seed of this random \
number generator is fixed by the environmental seed method, guranteeing the reproducibility \
of the experiment). You need not pass the dynamic_seed parameter in the seed method, or pass \
the parameter as True.
"""
self._env_seed = {}
if isinstance(seed, numbers.Integral):
self._env_seed = {i: seed + i for i in range(self.env_num)}
elif isinstance(seed, list):
assert len(seed) == self.env_num, "len(seed) {:d} != env_num {:d}".format(len(seed), self.env_num)
self._env_seed = {i: _seed for i, _seed in enumerate(seed)}
elif isinstance(seed, dict):
self._env_seed = {env_id: s for env_id, s in seed.items()}
else:
raise TypeError("Invalid seed arguments type: {}".format(type(seed)))
self._env_dynamic_seed = dynamic_seed
def enable_save_replay(self, replay_path: Union[List[str], str]) -> None:
"""
Overview:
Set each env's replay save path.
Arguments:
- replay_path (:obj:`Union[List[str], str]`): List of paths for each environment; \
Or one path for all environments.
"""
if isinstance(replay_path, str):
replay_path = [replay_path] * self.env_num
self._env_replay_path = replay_path
def _enable_env_replay(self):
if self._env_replay_path is None:
return
send_payloads = []
for env_id, s in enumerate(self._env_replay_path):
payload = SendPayload(proc_id=env_id, method="enable_save_replay", args=[s])
send_payloads.append(payload)
self.send(payload)
self.recv_all(send_payloads=send_payloads)
def __getattr__(self, key: str) -> List[Any]:
if not hasattr(self._env_ref, key):
raise AttributeError("env `{}` doesn't have the attribute `{}`".format(type(self._env_ref), key))
return super().__getattr__(key)
def close(self, timeout: Optional[float] = None) -> None:
"""
In order to be compatible with BaseEnvManager, the new version can use `shutdown` directly.
"""
self.shutdown(timeout=timeout)
def shutdown(self, timeout: Optional[float] = None) -> None:
if self._running:
send_payloads = []
for env_id in range(self.env_num):
payload = SendPayload(proc_id=env_id, method="close")
send_payloads.append(payload)
self.send(payload)
self.recv_all(send_payloads=send_payloads, ignore_err=True, timeout=timeout)
super().shutdown(timeout=timeout)
self._init_states()
@property
def closed(self) -> bool:
return not self._running
|