File size: 36,999 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 |
from typing import Any, Union, List, Tuple, Dict, Callable, Optional
from multiprocessing import connection, get_context
from collections import namedtuple
from ditk import logging
import platform
import time
import copy
import gymnasium
import gym
import traceback
import torch
import pickle
import numpy as np
import treetensor.numpy as tnp
from easydict import EasyDict
from types import MethodType
from ding.data import ShmBufferContainer, ShmBuffer
from ding.envs.env import BaseEnvTimestep
from ding.utils import PropagatingThread, LockContextType, LockContext, ENV_MANAGER_REGISTRY, make_key_as_identifier, \
remove_illegal_item, CloudPickleWrapper
from .base_env_manager import BaseEnvManager, EnvState, timeout_wrapper
def is_abnormal_timestep(timestep: namedtuple) -> bool:
if isinstance(timestep.info, dict):
return timestep.info.get('abnormal', False)
elif isinstance(timestep.info, list) or isinstance(timestep.info, tuple):
return timestep.info[0].get('abnormal', False) or timestep.info[1].get('abnormal', False)
else:
raise TypeError("invalid env timestep type: {}".format(type(timestep.info)))
@ENV_MANAGER_REGISTRY.register('async_subprocess')
class AsyncSubprocessEnvManager(BaseEnvManager):
"""
Overview:
Create an AsyncSubprocessEnvManager to manage multiple environments.
Each Environment is run by a respective subprocess.
Interfaces:
seed, launch, ready_obs, step, reset, active_env
"""
config = dict(
episode_num=float("inf"),
max_retry=1,
step_timeout=None,
auto_reset=True,
retry_type='reset',
reset_timeout=None,
retry_waiting_time=0.1,
# subprocess specified args
shared_memory=True,
copy_on_get=True,
context='spawn' if platform.system().lower() == 'windows' else 'fork',
wait_num=2,
step_wait_timeout=0.01,
connect_timeout=60,
reset_inplace=False,
)
def __init__(
self,
env_fn: List[Callable],
cfg: EasyDict = EasyDict({}),
) -> None:
"""
Overview:
Initialize the AsyncSubprocessEnvManager.
Arguments:
- env_fn (:obj:`List[Callable]`): The function to create environment
- cfg (:obj:`EasyDict`): Config
.. note::
- wait_num: for each time the minimum number of env return to gather
- step_wait_timeout: for each time the minimum number of env return to gather
"""
super().__init__(env_fn, cfg)
self._shared_memory = self._cfg.shared_memory
self._copy_on_get = self._cfg.copy_on_get
self._context = self._cfg.context
self._wait_num = self._cfg.wait_num
self._step_wait_timeout = self._cfg.step_wait_timeout
self._lock = LockContext(LockContextType.THREAD_LOCK)
self._connect_timeout = self._cfg.connect_timeout
self._async_args = {
'step': {
'wait_num': min(self._wait_num, self._env_num),
'timeout': self._step_wait_timeout
}
}
self._reset_inplace = self._cfg.reset_inplace
if not self._auto_reset:
assert not self._reset_inplace, "reset_inplace is unavailable when auto_reset=False."
def _create_state(self) -> None:
r"""
Overview:
Fork/spawn sub-processes(Call ``_create_env_subprocess``) and create pipes to transfer the data.
"""
self._env_episode_count = {env_id: 0 for env_id in range(self.env_num)}
self._ready_obs = {env_id: None for env_id in range(self.env_num)}
self._reset_param = {i: {} for i in range(self.env_num)}
if self._shared_memory:
obs_space = self._observation_space
if isinstance(obs_space, (gym.spaces.Dict, gymnasium.spaces.Dict)):
# For multi_agent case, such as multiagent_mujoco and petting_zoo mpe.
# Now only for the case that each agent in the team have the same obs structure
# and corresponding shape.
shape = {k: v.shape for k, v in obs_space.spaces.items()}
dtype = {k: v.dtype for k, v in obs_space.spaces.items()}
else:
shape = obs_space.shape
dtype = obs_space.dtype
self._obs_buffers = {
env_id: ShmBufferContainer(dtype, shape, copy_on_get=self._copy_on_get)
for env_id in range(self.env_num)
}
else:
self._obs_buffers = {env_id: None for env_id in range(self.env_num)}
self._pipe_parents, self._pipe_children = {}, {}
self._subprocesses = {}
for env_id in range(self.env_num):
self._create_env_subprocess(env_id)
self._waiting_env = {'step': set()}
self._closed = False
def _create_env_subprocess(self, env_id):
# start a new one
ctx = get_context(self._context)
self._pipe_parents[env_id], self._pipe_children[env_id] = ctx.Pipe()
self._subprocesses[env_id] = ctx.Process(
# target=self.worker_fn,
target=self.worker_fn_robust,
args=(
self._pipe_parents[env_id],
self._pipe_children[env_id],
CloudPickleWrapper(self._env_fn[env_id]),
self._obs_buffers[env_id],
self.method_name_list,
self._reset_timeout,
self._step_timeout,
self._reset_inplace,
),
daemon=True,
name='subprocess_env_manager{}_{}'.format(env_id, time.time())
)
self._subprocesses[env_id].start()
self._pipe_children[env_id].close()
self._env_states[env_id] = EnvState.INIT
if self._env_replay_path is not None:
self._pipe_parents[env_id].send(['enable_save_replay', [self._env_replay_path[env_id]], {}])
self._pipe_parents[env_id].recv()
@property
def ready_env(self) -> List[int]:
active_env = [i for i, s in self._env_states.items() if s == EnvState.RUN]
return [i for i in active_env if i not in self._waiting_env['step']]
@property
def ready_obs(self) -> Dict[int, Any]:
"""
Overview:
Get the next observations.
Return:
A dictionary with observations and their environment IDs.
Note:
The observations are returned in np.ndarray.
Example:
>>> obs_dict = env_manager.ready_obs
>>> actions_dict = {env_id: model.forward(obs) for env_id, obs in obs_dict.items())}
"""
no_done_env_idx = [i for i, s in self._env_states.items() if s != EnvState.DONE]
sleep_count = 0
while not any([self._env_states[i] == EnvState.RUN for i in no_done_env_idx]):
if sleep_count != 0 and sleep_count % 10000 == 0:
logging.warning(
'VEC_ENV_MANAGER: all the not done envs are resetting, sleep {} times'.format(sleep_count)
)
time.sleep(0.001)
sleep_count += 1
return {i: self._ready_obs[i] for i in self.ready_env}
@property
def ready_imgs(self, render_mode: Optional[str] = 'rgb_array') -> Dict[int, Any]:
"""
Overview:
Get the next renderd frames.
Return:
A dictionary with rendered frames and their environment IDs.
Note:
The rendered frames are returned in np.ndarray.
"""
for i in self.ready_env:
self._pipe_parents[i].send(['render', None, {'render_mode': render_mode}])
data = {i: self._pipe_parents[i].recv() for i in self.ready_env}
self._check_data(data)
return data
def launch(self, reset_param: Optional[Dict] = None) -> None:
"""
Overview:
Set up the environments and their parameters.
Arguments:
- reset_param (:obj:`Optional[Dict]`): Dict of reset parameters for each environment, key is the env_id, \
value is the cooresponding reset parameters.
"""
assert self._closed, "please first close the env manager"
if reset_param is not None:
assert len(reset_param) == len(self._env_fn)
self._create_state()
self.reset(reset_param)
def reset(self, reset_param: Optional[Dict] = None) -> None:
"""
Overview:
Reset the environments their parameters.
Arguments:
- reset_param (:obj:`List`): Dict of reset parameters for each environment, key is the env_id, \
value is the cooresponding reset parameters.
"""
self._check_closed()
if reset_param is None:
reset_env_list = [env_id for env_id in range(self._env_num)]
else:
reset_env_list = reset_param.keys()
for env_id in reset_param:
self._reset_param[env_id] = reset_param[env_id]
# clear previous info
for env_id in reset_env_list:
if env_id in self._waiting_env['step']:
self._pipe_parents[env_id].recv()
self._waiting_env['step'].remove(env_id)
sleep_count = 0
while any([self._env_states[i] == EnvState.RESET for i in reset_env_list]):
if sleep_count != 0 and sleep_count % 10000 == 0:
logging.warning(
'VEC_ENV_MANAGER: not all the envs finish resetting, sleep {} times'.format(sleep_count)
)
time.sleep(0.001)
sleep_count += 1
# reset env
reset_thread_list = []
for i, env_id in enumerate(reset_env_list):
# set seed
if self._env_seed[env_id] is not None:
try:
if self._env_dynamic_seed is not None:
self._pipe_parents[env_id].send(['seed', [self._env_seed[env_id], self._env_dynamic_seed], {}])
else:
self._pipe_parents[env_id].send(['seed', [self._env_seed[env_id]], {}])
ret = self._pipe_parents[env_id].recv()
self._check_data({env_id: ret})
self._env_seed[env_id] = None # seed only use once
except BaseException as e:
logging.warning(
"subprocess reset set seed failed, ignore and continue... \n subprocess exception traceback: \n"
+ traceback.format_exc()
)
self._env_states[env_id] = EnvState.RESET
reset_thread = PropagatingThread(target=self._reset, args=(env_id, ))
reset_thread.daemon = True
reset_thread_list.append(reset_thread)
for t in reset_thread_list:
t.start()
for t in reset_thread_list:
t.join()
def _reset(self, env_id: int) -> None:
def reset_fn():
if self._pipe_parents[env_id].poll():
recv_data = self._pipe_parents[env_id].recv()
raise RuntimeError("unread data left before sending to the pipe: {}".format(repr(recv_data)))
# if self._reset_param[env_id] is None, just reset specific env, not pass reset param
if self._reset_param[env_id] is not None:
assert isinstance(self._reset_param[env_id], dict), type(self._reset_param[env_id])
self._pipe_parents[env_id].send(['reset', [], self._reset_param[env_id]])
else:
self._pipe_parents[env_id].send(['reset', [], None])
if not self._pipe_parents[env_id].poll(self._connect_timeout):
raise ConnectionError("env reset connection timeout") # Leave it to try again
obs = self._pipe_parents[env_id].recv()
self._check_data({env_id: obs}, close=False)
if self._shared_memory:
obs = self._obs_buffers[env_id].get()
# it is necessary to add lock for the updates of env_state
with self._lock:
self._env_states[env_id] = EnvState.RUN
self._ready_obs[env_id] = obs
exceptions = []
for _ in range(self._max_retry):
try:
reset_fn()
return
except BaseException as e:
logging.info("subprocess exception traceback: \n" + traceback.format_exc())
if self._retry_type == 'renew' or isinstance(e, pickle.UnpicklingError):
self._pipe_parents[env_id].close()
if self._subprocesses[env_id].is_alive():
self._subprocesses[env_id].terminate()
self._create_env_subprocess(env_id)
exceptions.append(e)
time.sleep(self._retry_waiting_time)
logging.error("Env {} reset has exceeded max retries({})".format(env_id, self._max_retry))
runtime_error = RuntimeError(
"Env {} reset has exceeded max retries({}), and the latest exception is: {}".format(
env_id, self._max_retry, str(exceptions[-1])
)
)
runtime_error.__traceback__ = exceptions[-1].__traceback__
if self._closed: # exception cased by main thread closing parent_remote
return
else:
self.close()
raise runtime_error
def step(self, actions: Dict[int, Any]) -> Dict[int, namedtuple]:
"""
Overview:
Step all environments. Reset an env if done.
Arguments:
- actions (:obj:`Dict[int, Any]`): {env_id: action}
Returns:
- timesteps (:obj:`Dict[int, namedtuple]`): {env_id: timestep}. Timestep is a \
``BaseEnvTimestep`` tuple with observation, reward, done, env_info.
Example:
>>> actions_dict = {env_id: model.forward(obs) for env_id, obs in obs_dict.items())}
>>> timesteps = env_manager.step(actions_dict):
>>> for env_id, timestep in timesteps.items():
>>> pass
.. note:
- The env_id that appears in ``actions`` will also be returned in ``timesteps``.
- Each environment is run by a subprocess separately. Once an environment is done, it is reset immediately.
- Async subprocess env manager use ``connection.wait`` to poll.
"""
self._check_closed()
env_ids = list(actions.keys())
assert all([self._env_states[env_id] == EnvState.RUN for env_id in env_ids]
), 'current env state are: {}, please check whether the requested env is in reset or done'.format(
{env_id: self._env_states[env_id]
for env_id in env_ids}
)
for env_id, act in actions.items():
self._pipe_parents[env_id].send(['step', [act], None])
timesteps = {}
step_args = self._async_args['step']
wait_num, timeout = min(step_args['wait_num'], len(env_ids)), step_args['timeout']
rest_env_ids = list(set(env_ids).union(self._waiting_env['step']))
ready_env_ids = []
cur_rest_env_ids = copy.deepcopy(rest_env_ids)
while True:
rest_conn = [self._pipe_parents[env_id] for env_id in cur_rest_env_ids]
ready_conn, ready_ids = AsyncSubprocessEnvManager.wait(rest_conn, min(wait_num, len(rest_conn)), timeout)
cur_ready_env_ids = [cur_rest_env_ids[env_id] for env_id in ready_ids]
assert len(cur_ready_env_ids) == len(ready_conn)
# timesteps.update({env_id: p.recv() for env_id, p in zip(cur_ready_env_ids, ready_conn)})
for env_id, p in zip(cur_ready_env_ids, ready_conn):
try:
timesteps.update({env_id: p.recv()})
except pickle.UnpicklingError as e:
timestep = BaseEnvTimestep(None, None, None, {'abnormal': True})
timesteps.update({env_id: timestep})
self._pipe_parents[env_id].close()
if self._subprocesses[env_id].is_alive():
self._subprocesses[env_id].terminate()
self._create_env_subprocess(env_id)
self._check_data(timesteps)
ready_env_ids += cur_ready_env_ids
cur_rest_env_ids = list(set(cur_rest_env_ids).difference(set(cur_ready_env_ids)))
# At least one not done env timestep, or all envs' steps are finished
if any([not t.done for t in timesteps.values()]) or len(ready_conn) == len(rest_conn):
break
self._waiting_env['step']: set
for env_id in rest_env_ids:
if env_id in ready_env_ids:
if env_id in self._waiting_env['step']:
self._waiting_env['step'].remove(env_id)
else:
self._waiting_env['step'].add(env_id)
if self._shared_memory:
for i, (env_id, timestep) in enumerate(timesteps.items()):
timesteps[env_id] = timestep._replace(obs=self._obs_buffers[env_id].get())
for env_id, timestep in timesteps.items():
if is_abnormal_timestep(timestep):
self._env_states[env_id] = EnvState.ERROR
continue
if timestep.done:
self._env_episode_count[env_id] += 1
if self._env_episode_count[env_id] < self._episode_num:
if self._auto_reset:
if self._reset_inplace: # reset in subprocess at once
self._env_states[env_id] = EnvState.RUN
self._ready_obs[env_id] = timestep.obs
else:
# in this case, ready_obs is updated in ``self._reset``
self._env_states[env_id] = EnvState.RESET
reset_thread = PropagatingThread(target=self._reset, args=(env_id, ), name='regular_reset')
reset_thread.daemon = True
reset_thread.start()
else:
# in the case that auto_reset=False, caller should call ``env_manager.reset`` manually
self._env_states[env_id] = EnvState.NEED_RESET
else:
self._env_states[env_id] = EnvState.DONE
else:
self._ready_obs[env_id] = timestep.obs
return timesteps
# This method must be staticmethod, otherwise there will be some resource conflicts(e.g. port or file)
# Env must be created in worker, which is a trick of avoiding env pickle errors.
# A more robust version is used by default. But this one is also preserved.
@staticmethod
def worker_fn(
p: connection.Connection,
c: connection.Connection,
env_fn_wrapper: 'CloudPickleWrapper',
obs_buffer: ShmBuffer,
method_name_list: list,
reset_inplace: bool = False,
) -> None: # noqa
"""
Overview:
Subprocess's target function to run.
"""
torch.set_num_threads(1)
env_fn = env_fn_wrapper.data
env = env_fn()
p.close()
try:
while True:
try:
cmd, args, kwargs = c.recv()
except EOFError: # for the case when the pipe has been closed
c.close()
break
try:
if cmd == 'getattr':
ret = getattr(env, args[0])
elif cmd in method_name_list:
if cmd == 'step':
timestep = env.step(*args, **kwargs)
if is_abnormal_timestep(timestep):
ret = timestep
else:
if reset_inplace and timestep.done:
obs = env.reset()
timestep = timestep._replace(obs=obs)
if obs_buffer is not None:
obs_buffer.fill(timestep.obs)
timestep = timestep._replace(obs=None)
ret = timestep
elif cmd == 'reset':
ret = env.reset(*args, **kwargs) # obs
if obs_buffer is not None:
obs_buffer.fill(ret)
ret = None
elif args is None and kwargs is None:
ret = getattr(env, cmd)()
else:
ret = getattr(env, cmd)(*args, **kwargs)
else:
raise KeyError("not support env cmd: {}".format(cmd))
c.send(ret)
except Exception as e:
# when there are some errors in env, worker_fn will send the errors to env manager
# directly send error to another process will lose the stack trace, so we create a new Exception
logging.warning("subprocess exception traceback: \n" + traceback.format_exc())
c.send(
e.__class__(
'\nEnv Process Exception:\n' + ''.join(traceback.format_tb(e.__traceback__)) + repr(e)
)
)
if cmd == 'close':
c.close()
break
except KeyboardInterrupt:
c.close()
@staticmethod
def worker_fn_robust(
parent,
child,
env_fn_wrapper,
obs_buffer,
method_name_list,
reset_timeout=None,
step_timeout=None,
reset_inplace=False,
) -> None:
"""
Overview:
A more robust version of subprocess's target function to run. Used by default.
"""
torch.set_num_threads(1)
env_fn = env_fn_wrapper.data
env = env_fn()
parent.close()
@timeout_wrapper(timeout=step_timeout)
def step_fn(*args, **kwargs):
timestep = env.step(*args, **kwargs)
if is_abnormal_timestep(timestep):
ret = timestep
else:
if reset_inplace and timestep.done:
obs = env.reset()
timestep = timestep._replace(obs=obs)
if obs_buffer is not None:
obs_buffer.fill(timestep.obs)
timestep = timestep._replace(obs=None)
ret = timestep
return ret
@timeout_wrapper(timeout=reset_timeout)
def reset_fn(*args, **kwargs):
try:
ret = env.reset(*args, **kwargs)
if obs_buffer is not None:
obs_buffer.fill(ret)
ret = None
return ret
except BaseException as e:
logging.warning("subprocess exception traceback: \n" + traceback.format_exc())
env.close()
raise e
while True:
try:
cmd, args, kwargs = child.recv()
except EOFError: # for the case when the pipe has been closed
child.close()
break
try:
if cmd == 'getattr':
ret = getattr(env, args[0])
elif cmd in method_name_list:
if cmd == 'step':
ret = step_fn(*args)
elif cmd == 'reset':
if kwargs is None:
kwargs = {}
ret = reset_fn(*args, **kwargs)
elif cmd == 'render':
from ding.utils import render
ret = render(env, **kwargs)
elif args is None and kwargs is None:
ret = getattr(env, cmd)()
else:
ret = getattr(env, cmd)(*args, **kwargs)
else:
raise KeyError("not support env cmd: {}".format(cmd))
child.send(ret)
except BaseException as e:
logging.debug("Sub env '{}' error when executing {}".format(str(env), cmd))
# when there are some errors in env, worker_fn will send the errors to env manager
# directly send error to another process will lose the stack trace, so we create a new Exception
logging.warning("subprocess exception traceback: \n" + traceback.format_exc())
child.send(
e.__class__('\nEnv Process Exception:\n' + ''.join(traceback.format_tb(e.__traceback__)) + repr(e))
)
if cmd == 'close':
child.close()
break
def _check_data(self, data: Dict, close: bool = True) -> None:
exceptions = []
for i, d in data.items():
if isinstance(d, BaseException):
self._env_states[i] = EnvState.ERROR
exceptions.append(d)
# when receiving env Exception, env manager will safely close and raise this Exception to caller
if len(exceptions) > 0:
if close:
self.close()
raise exceptions[0]
# override
def __getattr__(self, key: str) -> Any:
self._check_closed()
# we suppose that all the envs has the same attributes, if you need different envs, please
# create different env managers.
if not hasattr(self._env_ref, key):
raise AttributeError("env `{}` doesn't have the attribute `{}`".format(type(self._env_ref), key))
if isinstance(getattr(self._env_ref, key), MethodType) and key not in self.method_name_list:
raise RuntimeError("env getattr doesn't supports method({}), please override method_name_list".format(key))
for _, p in self._pipe_parents.items():
p.send(['getattr', [key], {}])
data = {i: p.recv() for i, p in self._pipe_parents.items()}
self._check_data(data)
ret = [data[i] for i in self._pipe_parents.keys()]
return ret
# override
def enable_save_replay(self, replay_path: Union[List[str], str]) -> None:
"""
Overview:
Set each env's replay save path.
Arguments:
- replay_path (:obj:`Union[List[str], str]`): List of paths for each environment; \
Or one path for all environments.
"""
if isinstance(replay_path, str):
replay_path = [replay_path] * self.env_num
self._env_replay_path = replay_path
# override
def close(self) -> None:
"""
Overview:
CLose the env manager and release all related resources.
"""
if self._closed:
return
self._closed = True
for _, p in self._pipe_parents.items():
p.send(['close', None, None])
for env_id, p in self._pipe_parents.items():
if not p.poll(5):
continue
p.recv()
for i in range(self._env_num):
self._env_states[i] = EnvState.VOID
# disable process join for avoiding hang
# for p in self._subprocesses:
# p.join()
for _, p in self._subprocesses.items():
p.terminate()
for _, p in self._pipe_parents.items():
p.close()
@staticmethod
def wait(rest_conn: list, wait_num: int, timeout: Optional[float] = None) -> Tuple[list, list]:
"""
Overview:
Wait at least enough(len(ready_conn) >= wait_num) connections within timeout constraint.
If timeout is None and wait_num == len(ready_conn), means sync mode;
If timeout is not None, will return when len(ready_conn) >= wait_num and
this method takes more than timeout seconds.
"""
assert 1 <= wait_num <= len(rest_conn
), 'please indicate proper wait_num: <wait_num: {}, rest_conn_num: {}>'.format(
wait_num, len(rest_conn)
)
rest_conn_set = set(rest_conn)
ready_conn = set()
start_time = time.time()
while len(rest_conn_set) > 0:
if len(ready_conn) >= wait_num and timeout:
if (time.time() - start_time) >= timeout:
break
finish_conn = set(connection.wait(rest_conn_set, timeout=timeout))
ready_conn = ready_conn.union(finish_conn)
rest_conn_set = rest_conn_set.difference(finish_conn)
ready_ids = [rest_conn.index(c) for c in ready_conn]
return list(ready_conn), ready_ids
@ENV_MANAGER_REGISTRY.register('subprocess')
class SyncSubprocessEnvManager(AsyncSubprocessEnvManager):
config = dict(
episode_num=float("inf"),
max_retry=1,
step_timeout=None,
auto_reset=True,
reset_timeout=None,
retry_type='reset',
retry_waiting_time=0.1,
# subprocess specified args
shared_memory=True,
copy_on_get=True,
context='spawn' if platform.system().lower() == 'windows' else 'fork',
wait_num=float("inf"), # inf mean all the environments
step_wait_timeout=None,
connect_timeout=60,
reset_inplace=False, # if reset_inplace=True in SyncSubprocessEnvManager, the interaction can be reproducible.
)
def step(self, actions: Dict[int, Any]) -> Dict[int, namedtuple]:
"""
Overview:
Step all environments. Reset an env if done.
Arguments:
- actions (:obj:`Dict[int, Any]`): {env_id: action}
Returns:
- timesteps (:obj:`Dict[int, namedtuple]`): {env_id: timestep}. Timestep is a \
``BaseEnvTimestep`` tuple with observation, reward, done, env_info.
Example:
>>> actions_dict = {env_id: model.forward(obs) for env_id, obs in obs_dict.items())}
>>> timesteps = env_manager.step(actions_dict):
>>> for env_id, timestep in timesteps.items():
>>> pass
.. note::
- The env_id that appears in ``actions`` will also be returned in ``timesteps``.
- Each environment is run by a subprocess separately. Once an environment is done, it is reset immediately.
"""
self._check_closed()
env_ids = list(actions.keys())
assert all([self._env_states[env_id] == EnvState.RUN for env_id in env_ids]
), 'current env state are: {}, please check whether the requested env is in reset or done'.format(
{env_id: self._env_states[env_id]
for env_id in env_ids}
)
for env_id, act in actions.items():
# it is necessary to set kwargs as None for saving cost of serialization in some env like cartpole,
# and step method never uses kwargs in known envs.
self._pipe_parents[env_id].send(['step', [act], None])
# === This part is different from async one. ===
# === Because operate in this way is more efficient. ===
timesteps = {}
ready_conn = [self._pipe_parents[env_id] for env_id in env_ids]
# timesteps.update({env_id: p.recv() for env_id, p in zip(env_ids, ready_conn)})
for env_id, p in zip(env_ids, ready_conn):
try:
timesteps.update({env_id: p.recv()})
except pickle.UnpicklingError as e:
timestep = BaseEnvTimestep(None, None, None, {'abnormal': True})
timesteps.update({env_id: timestep})
self._pipe_parents[env_id].close()
if self._subprocesses[env_id].is_alive():
self._subprocesses[env_id].terminate()
self._create_env_subprocess(env_id)
self._check_data(timesteps)
# ======================================================
if self._shared_memory:
# TODO(nyz) optimize sync shm
for i, (env_id, timestep) in enumerate(timesteps.items()):
timesteps[env_id] = timestep._replace(obs=self._obs_buffers[env_id].get())
for env_id, timestep in timesteps.items():
if is_abnormal_timestep(timestep):
self._env_states[env_id] = EnvState.ERROR
continue
if timestep.done:
self._env_episode_count[env_id] += 1
if self._env_episode_count[env_id] < self._episode_num:
if self._auto_reset:
if self._reset_inplace: # reset in subprocess at once
self._env_states[env_id] = EnvState.RUN
self._ready_obs[env_id] = timestep.obs
else:
# in this case, ready_obs is updated in ``self._reset``
self._env_states[env_id] = EnvState.RESET
reset_thread = PropagatingThread(target=self._reset, args=(env_id, ), name='regular_reset')
reset_thread.daemon = True
reset_thread.start()
else:
# in the case that auto_reset=False, caller should call ``env_manager.reset`` manually
self._env_states[env_id] = EnvState.NEED_RESET
else:
self._env_states[env_id] = EnvState.DONE
else:
self._ready_obs[env_id] = timestep.obs
return timesteps
@ENV_MANAGER_REGISTRY.register('subprocess_v2')
class SubprocessEnvManagerV2(SyncSubprocessEnvManager):
"""
Overview:
SyncSubprocessEnvManager for new task pipeline and interfaces coupled with treetensor.
"""
@property
def ready_obs(self) -> tnp.array:
"""
Overview:
Get the ready (next) observation in ``tnp.array`` type, which is uniform for both async/sync scenarios.
Return:
- ready_obs (:obj:`tnp.array`): A stacked treenumpy-type observation data.
Example:
>>> obs = env_manager.ready_obs
>>> action = model(obs) # model input np obs and output np action
>>> timesteps = env_manager.step(action)
"""
no_done_env_idx = [i for i, s in self._env_states.items() if s != EnvState.DONE]
sleep_count = 0
while not any([self._env_states[i] == EnvState.RUN for i in no_done_env_idx]):
if sleep_count != 0 and sleep_count % 10000 == 0:
logging.warning(
'VEC_ENV_MANAGER: all the not done envs are resetting, sleep {} times'.format(sleep_count)
)
time.sleep(0.001)
sleep_count += 1
return tnp.stack([tnp.array(self._ready_obs[i]) for i in self.ready_env])
def step(self, actions: Union[List[tnp.ndarray], tnp.ndarray]) -> List[tnp.ndarray]:
"""
Overview:
Execute env step according to input actions. And reset an env if done.
Arguments:
- actions (:obj:`Union[List[tnp.ndarray], tnp.ndarray]`): actions came from outer caller like policy.
Returns:
- timesteps (:obj:`List[tnp.ndarray]`): Each timestep is a tnp.array with observation, reward, done, \
info, env_id.
"""
if isinstance(actions, tnp.ndarray):
# zip operation will lead to wrong behaviour if not split data
split_action = tnp.split(actions, actions.shape[0])
split_action = [s.squeeze(0) for s in split_action]
else:
split_action = actions
actions = {env_id: a for env_id, a in zip(self.ready_obs_id, split_action)}
timesteps = super().step(actions)
new_data = []
for env_id, timestep in timesteps.items():
obs, reward, done, info = timestep
# make the type and content of key as similar as identifier,
# in order to call them as attribute (e.g. timestep.xxx), such as ``TimeLimit.truncated`` in cartpole info
info = make_key_as_identifier(info)
info = remove_illegal_item(info)
new_data.append(tnp.array({'obs': obs, 'reward': reward, 'done': done, 'info': info, 'env_id': env_id}))
return new_data
|