File size: 65,137 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 |
from typing import Optional, Dict, Union, List
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Normal, Independent
from ding.torch_utils import fc_block, noise_block, NoiseLinearLayer, MLP, PopArt, conv1d_block
from ding.rl_utils import beta_function_map
from ding.utils import lists_to_dicts, SequenceType
class DiscreteHead(nn.Module):
"""
Overview:
The ``DiscreteHead`` is used to generate discrete actions logit or Q-value logit, \
which is often used in q-learning algorithms or actor-critic algorithms for discrete action space.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
dropout: Optional[float] = None,
noise: Optional[bool] = False,
) -> None:
"""
Overview:
Init the ``DiscreteHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``DiscreteHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- dropout (:obj:`float`): The dropout rate, default set to None.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
"""
super(DiscreteHead, self).__init__()
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
use_dropout=dropout is not None,
dropout_probability=dropout,
norm_type=norm_type
), block(hidden_size, output_size)
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``DiscreteHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keyword ``logit`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
Examples:
>>> head = DiscreteHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 64])
"""
logit = self.Q(x)
return {'logit': logit}
class DistributionHead(nn.Module):
"""
Overview:
The ``DistributionHead`` is used to generate distribution for Q-value.
This module is used in C51 algorithm.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
n_atom: int = 51,
v_min: float = -10,
v_max: float = 10,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
noise: Optional[bool] = False,
eps: Optional[float] = 1e-6,
) -> None:
"""
Overview:
Init the ``DistributionHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``DistributionHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value distribution.
- n_atom (:obj:`int`): The number of atoms (discrete supports). Default is ``51``.
- v_min (:obj:`int`): Min value of atoms. Default is ``-10``.
- v_max (:obj:`int`): Max value of atoms. Default is ``10``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
- eps (:obj:`float`): Small constant used for numerical stability.
"""
super(DistributionHead, self).__init__()
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, output_size * n_atom)
)
self.output_size = output_size
self.n_atom = n_atom
self.v_min = v_min
self.v_max = v_max
self.eps = eps # for numerical stability
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``DistributionHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`) and \
``distribution`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
- distribution: :math:`(B, M, n_atom)`.
Examples:
>>> head = DistributionHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default n_atom is 51
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51])
"""
q = self.Q(x)
q = q.view(*q.shape[:-1], self.output_size, self.n_atom)
dist = torch.softmax(q, dim=-1) + self.eps
q = dist * torch.linspace(self.v_min, self.v_max, self.n_atom).to(x)
q = q.sum(-1)
return {'logit': q, 'distribution': dist}
class BranchingHead(nn.Module):
"""
Overview:
The ``BranchingHead`` is used to generate Q-value with different branches.
This module is used in Branch DQN.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
num_branches: int = 0,
action_bins_per_branch: int = 2,
layer_num: int = 1,
a_layer_num: Optional[int] = None,
v_layer_num: Optional[int] = None,
norm_type: Optional[str] = None,
activation: Optional[nn.Module] = nn.ReLU(),
noise: Optional[bool] = False,
) -> None:
"""
Overview:
Init the ``BranchingHead`` layers according to the provided arguments. \
This head achieves a linear increase of the number of network outputs \
with the number of degrees of freedom by allowing a level of independence for each individual action.
Therefore, this head is suitable for high dimensional action Spaces.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``BranchingHead``.
- num_branches (:obj:`int`): The number of branches, which is equivalent to the action dimension.
- action_bins_per_branch (:obj:int): The number of action bins in each dimension.
- layer_num (:obj:`int`): The number of layers used in the network to compute Advantage and Value output.
- a_layer_num (:obj:`int`): The number of layers used in the network to compute Advantage output.
- v_layer_num (:obj:`int`): The number of layers used in the network to compute Value output.
- output_size (:obj:`int`): The number of outputs.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
"""
super(BranchingHead, self).__init__()
if a_layer_num is None:
a_layer_num = layer_num
if v_layer_num is None:
v_layer_num = layer_num
self.num_branches = num_branches
self.action_bins_per_branch = action_bins_per_branch
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
# value network
self.V = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
v_layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, 1)
)
# action branching network
action_output_dim = action_bins_per_branch
self.branches = nn.ModuleList(
[
nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
a_layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, action_output_dim)
) for _ in range(self.num_branches)
]
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``BranchingHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keyword ``logit`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
Examples:
>>> head = BranchingHead(64, 5, 2)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 5, 2])
"""
value_out = self.V(x)
value_out = torch.unsqueeze(value_out, 1)
action_out = []
for b in self.branches:
action_out.append(b(x))
action_scores = torch.stack(action_out, 1)
# From the paper, this implementation performs better than both the naive alternative (Q = V + A) \
# and the local maximum reduction method (Q = V + max(A)).
action_scores = action_scores - torch.mean(action_scores, 2, keepdim=True)
logits = value_out + action_scores
return {'logit': logits}
class RainbowHead(nn.Module):
"""
Overview:
The ``RainbowHead`` is used to generate distribution of Q-value.
This module is used in Rainbow DQN.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
n_atom: int = 51,
v_min: float = -10,
v_max: float = 10,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
noise: Optional[bool] = True,
eps: Optional[float] = 1e-6,
) -> None:
"""
Overview:
Init the ``RainbowHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``RainbowHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- n_atom (:obj:`int`): The number of atoms (discrete supports). Default is ``51``.
- v_min (:obj:`int`): Min value of atoms. Default is ``-10``.
- v_max (:obj:`int`): Max value of atoms. Default is ``10``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
- eps (:obj:`float`): Small constant used for numerical stability.
"""
super(RainbowHead, self).__init__()
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.A = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, output_size * n_atom)
)
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, n_atom)
)
self.output_size = output_size
self.n_atom = n_atom
self.v_min = v_min
self.v_max = v_max
self.eps = eps
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``RainbowHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`) and \
``distribution`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
- distribution: :math:`(B, M, n_atom)`.
Examples:
>>> head = RainbowHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default n_atom is 51
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51])
"""
a = self.A(x)
q = self.Q(x)
a = a.view(*a.shape[:-1], self.output_size, self.n_atom)
q = q.view(*q.shape[:-1], 1, self.n_atom)
q = q + a - a.mean(dim=-2, keepdim=True)
dist = torch.softmax(q, dim=-1) + self.eps
q = dist * torch.linspace(self.v_min, self.v_max, self.n_atom).to(x)
q = q.sum(-1)
return {'logit': q, 'distribution': dist}
class QRDQNHead(nn.Module):
"""
Overview:
The ``QRDQNHead`` (Quantile Regression DQN) is used to output action quantiles.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
num_quantiles: int = 32,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
noise: Optional[bool] = False,
) -> None:
"""
Overview:
Init the ``QRDQNHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``QRDQNHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- num_quantiles (:obj:`int`): The number of quantiles. Default is ``32``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
"""
super(QRDQNHead, self).__init__()
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, output_size * num_quantiles)
)
self.num_quantiles = num_quantiles
self.output_size = output_size
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``QRDQNHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \
``q`` (:obj:`torch.Tensor`), and ``tau`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
- q: :math:`(B, M, num_quantiles)`.
- tau: :math:`(B, M, 1)`.
Examples:
>>> head = QRDQNHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles is 32
>>> assert outputs['q'].shape == torch.Size([4, 64, 32])
>>> assert outputs['tau'].shape == torch.Size([4, 32, 1])
"""
q = self.Q(x)
q = q.view(*q.shape[:-1], self.output_size, self.num_quantiles)
logit = q.mean(-1)
tau = torch.linspace(0, 1, self.num_quantiles + 1)
tau = ((tau[:-1] + tau[1:]) / 2).view(1, -1, 1).repeat(q.shape[0], 1, 1).to(q)
return {'logit': logit, 'q': q, 'tau': tau}
class QuantileHead(nn.Module):
"""
Overview:
The ``QuantileHead`` is used to output action quantiles.
This module is used in IQN.
Interfaces:
``__init__``, ``forward``, ``quantile_net``.
.. note::
The difference between ``QuantileHead`` and ``QRDQNHead`` is that ``QuantileHead`` models the \
state-action quantile function as a mapping from state-actions and samples from some base distribution \
while ``QRDQNHead`` approximates random returns by a uniform mixture of Diracs functions.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
num_quantiles: int = 32,
quantile_embedding_size: int = 128,
beta_function_type: Optional[str] = 'uniform',
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
noise: Optional[bool] = False,
) -> None:
"""
Overview:
Init the ``QuantileHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``QuantileHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- num_quantiles (:obj:`int`): The number of quantiles.
- quantile_embedding_size (:obj:`int`): The embedding size of a quantile.
- beta_function_type (:obj:`str`): Type of beta function. See ``ding.rl_utils.beta_function.py`` \
for more details. Default is ``uniform``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
"""
super(QuantileHead, self).__init__()
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, output_size)
)
self.num_quantiles = num_quantiles
self.quantile_embedding_size = quantile_embedding_size
self.output_size = output_size
self.iqn_fc = nn.Linear(self.quantile_embedding_size, hidden_size)
self.beta_function = beta_function_map[beta_function_type]
def quantile_net(self, quantiles: torch.Tensor) -> torch.Tensor:
"""
Overview:
Deterministic parametric function trained to reparameterize samples from a base distribution. \
By repeated Bellman update iterations of Q-learning, the optimal action-value function is estimated.
Arguments:
- x (:obj:`torch.Tensor`): The encoded embedding tensor of parametric sample.
Returns:
- quantile_net (:obj:`torch.Tensor`): Quantile network output tensor after reparameterization.
Shapes:
- quantile_net :math:`(quantile_embedding_size, M)`, where ``M = output_size``.
Examples:
>>> head = QuantileHead(64, 64)
>>> quantiles = torch.randn(128,1)
>>> qn_output = head.quantile_net(quantiles)
>>> assert isinstance(qn_output, torch.Tensor)
>>> # default quantile_embedding_size: int = 128,
>>> assert qn_output.shape == torch.Size([128, 64])
"""
quantile_net = quantiles.repeat([1, self.quantile_embedding_size])
quantile_net = torch.cos(
torch.arange(1, self.quantile_embedding_size + 1, 1).to(quantiles) * math.pi * quantile_net
)
quantile_net = self.iqn_fc(quantile_net)
quantile_net = F.relu(quantile_net)
return quantile_net
def forward(self, x: torch.Tensor, num_quantiles: Optional[int] = None) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``QuantileHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \
``q`` (:obj:`torch.Tensor`), and ``quantiles`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
- q: :math:`(num_quantiles, B, M)`.
- quantiles: :math:`(quantile_embedding_size, 1)`.
Examples:
>>> head = QuantileHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles is 32
>>> assert outputs['q'].shape == torch.Size([32, 4, 64])
>>> assert outputs['quantiles'].shape == torch.Size([128, 1])
"""
if num_quantiles is None:
num_quantiles = self.num_quantiles
batch_size = x.shape[0]
q_quantiles = torch.FloatTensor(num_quantiles * batch_size, 1).uniform_(0, 1).to(x)
logit_quantiles = torch.FloatTensor(num_quantiles * batch_size, 1).uniform_(0, 1).to(x)
logit_quantiles = self.beta_function(logit_quantiles)
q_quantile_net = self.quantile_net(q_quantiles)
logit_quantile_net = self.quantile_net(logit_quantiles)
x = x.repeat(num_quantiles, 1)
q_x = x * q_quantile_net # 4*32,64
logit_x = x * logit_quantile_net
q = self.Q(q_x).reshape(num_quantiles, batch_size, -1)
logit = self.Q(logit_x).reshape(num_quantiles, batch_size, -1).mean(0)
return {'logit': logit, 'q': q, 'quantiles': q_quantiles}
class FQFHead(nn.Module):
"""
Overview:
The ``FQFHead`` is used to output action quantiles.
This module is used in FQF.
Interfaces:
``__init__``, ``forward``, ``quantile_net``.
.. note::
The implementation of FQFHead is based on the paper https://arxiv.org/abs/1911.02140.
The difference between FQFHead and QuantileHead is that, in FQF, \
N adjustable quantile values for N adjustable quantile fractions are estimated to approximate \
the quantile function. The distribution of the return is approximated by a weighted mixture of N \
Diracs functions. While in IQN, the state-action quantile function is modeled as a mapping from \
state-actions and samples from some base distribution.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
num_quantiles: int = 32,
quantile_embedding_size: int = 128,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
noise: Optional[bool] = False,
) -> None:
"""
Overview:
Init the ``FQFHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``FQFHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- num_quantiles (:obj:`int`): The number of quantiles.
- quantile_embedding_size (:obj:`int`): The embedding size of a quantile.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
"""
super(FQFHead, self).__init__()
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, output_size)
)
self.num_quantiles = num_quantiles
self.quantile_embedding_size = quantile_embedding_size
self.output_size = output_size
self.fqf_fc = nn.Sequential(nn.Linear(self.quantile_embedding_size, hidden_size), nn.ReLU())
self.register_buffer(
'sigma_pi',
torch.arange(1, self.quantile_embedding_size + 1, 1).view(1, 1, self.quantile_embedding_size) * math.pi
)
# initialize weights_xavier of quantiles_proposal network
# NOTE(rjy): quantiles_proposal network mean fraction proposal network
quantiles_proposal_fc = nn.Linear(hidden_size, num_quantiles)
torch.nn.init.xavier_uniform_(quantiles_proposal_fc.weight, gain=0.01)
torch.nn.init.constant_(quantiles_proposal_fc.bias, 0)
self.quantiles_proposal = nn.Sequential(quantiles_proposal_fc, nn.LogSoftmax(dim=1))
def quantile_net(self, quantiles: torch.Tensor) -> torch.Tensor:
"""
Overview:
Deterministic parametric function trained to reparameterize samples from the quantiles_proposal network. \
By repeated Bellman update iterations of Q-learning, the optimal action-value function is estimated.
Arguments:
- x (:obj:`torch.Tensor`): The encoded embedding tensor of parametric sample.
Returns:
- quantile_net (:obj:`torch.Tensor`): Quantile network output tensor after reparameterization.
Examples:
>>> head = FQFHead(64, 64)
>>> quantiles = torch.randn(4,32)
>>> qn_output = head.quantile_net(quantiles)
>>> assert isinstance(qn_output, torch.Tensor)
>>> # default quantile_embedding_size: int = 128,
>>> assert qn_output.shape == torch.Size([4, 32, 64])
"""
batch_size, num_quantiles = quantiles.shape[:2]
quantile_net = torch.cos(self.sigma_pi.to(quantiles) * quantiles.view(batch_size, num_quantiles, 1))
quantile_net = self.fqf_fc(quantile_net) # (batch_size, num_quantiles, hidden_size)
return quantile_net
def forward(self, x: torch.Tensor, num_quantiles: Optional[int] = None) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``FQFHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \
``q`` (:obj:`torch.Tensor`), ``quantiles`` (:obj:`torch.Tensor`), \
``quantiles_hats`` (:obj:`torch.Tensor`), \
``q_tau_i`` (:obj:`torch.Tensor`), ``entropies`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
- q: :math:`(B, num_quantiles, M)`.
- quantiles: :math:`(B, num_quantiles + 1)`.
- quantiles_hats: :math:`(B, num_quantiles)`.
- q_tau_i: :math:`(B, num_quantiles - 1, M)`.
- entropies: :math:`(B, 1)`.
Examples:
>>> head = FQFHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles is 32
>>> assert outputs['q'].shape == torch.Size([4, 32, 64])
>>> assert outputs['quantiles'].shape == torch.Size([4, 33])
>>> assert outputs['quantiles_hats'].shape == torch.Size([4, 32])
>>> assert outputs['q_tau_i'].shape == torch.Size([4, 31, 64])
>>> assert outputs['quantiles'].shape == torch.Size([4, 1])
"""
if num_quantiles is None:
num_quantiles = self.num_quantiles
batch_size = x.shape[0]
log_q_quantiles = self.quantiles_proposal(
x.detach()
) # (batch_size, num_quantiles), not to update encoder when learning w1_loss(fraction loss)
q_quantiles = log_q_quantiles.exp() # NOTE(rjy): e^log_q = q
# Calculate entropies of value distributions.
entropies = -(log_q_quantiles * q_quantiles).sum(dim=-1, keepdim=True) # (batch_size, 1)
assert entropies.shape == (batch_size, 1)
# accumalative softmax
# NOTE(rjy): because quantiles are still expressed in the form of their respective proportions,
# e.g. [0.33, 0.33, 0.33] => [0.33, 0.66, 0.99]
q_quantiles = torch.cumsum(q_quantiles, dim=1)
# quantile_hats: find the optimal condition for τ to minimize W1(Z, τ)
tau_0 = torch.zeros((batch_size, 1)).to(x)
q_quantiles = torch.cat((tau_0, q_quantiles), dim=1) # [batch_size, num_quantiles+1]
# NOTE(rjy): theta_i = F^(-1)_Z((tau_i+tau_i+1)/2), τ^ = (tau_i+tau_i+1)/2, q_quantiles_hats is τ^
q_quantiles_hats = (q_quantiles[:, 1:] + q_quantiles[:, :-1]).detach() / 2. # (batch_size, num_quantiles)
# NOTE(rjy): reparameterize q_quantiles_hats
q_quantile_net = self.quantile_net(q_quantiles_hats) # [batch_size, num_quantiles, hidden_size(64)]
# x.view[batch_size, 1, hidden_size(64)]
q_x = (x.view(batch_size, 1, -1) * q_quantile_net) # [batch_size, num_quantiles, hidden_size(64)]
q = self.Q(q_x) # [batch_size, num_quantiles, action_dim(64)]
logit = q.mean(1)
with torch.no_grad():
q_tau_i_net = self.quantile_net(
q_quantiles[:, 1:-1].detach()
) # [batch_size, num_quantiles-1, hidden_size(64)]
q_tau_i_x = (x.view(batch_size, 1, -1) * q_tau_i_net) # [batch_size, (num_quantiles-1), hidden_size(64)]
q_tau_i = self.Q(q_tau_i_x) # [batch_size, num_quantiles-1, action_dim]
return {
'logit': logit,
'q': q,
'quantiles': q_quantiles,
'quantiles_hats': q_quantiles_hats,
'q_tau_i': q_tau_i,
'entropies': entropies
}
class DuelingHead(nn.Module):
"""
Overview:
The ``DuelingHead`` is used to output discrete actions logit.
This module is used in Dueling DQN.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
a_layer_num: Optional[int] = None,
v_layer_num: Optional[int] = None,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
dropout: Optional[float] = None,
noise: Optional[bool] = False,
) -> None:
"""
Overview:
Init the ``DuelingHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``DuelingHead``.
- output_size (:obj:`int`): The number of outputs.
- a_layer_num (:obj:`int`): The number of layers used in the network to compute action output.
- v_layer_num (:obj:`int`): The number of layers used in the network to compute value output.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- dropout (:obj:`float`): The dropout rate of dropout layer. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
"""
super(DuelingHead, self).__init__()
if a_layer_num is None:
a_layer_num = layer_num
if v_layer_num is None:
v_layer_num = layer_num
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.A = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
a_layer_num,
layer_fn=layer,
activation=activation,
use_dropout=dropout is not None,
dropout_probability=dropout,
norm_type=norm_type
), block(hidden_size, output_size)
)
self.V = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
v_layer_num,
layer_fn=layer,
activation=activation,
use_dropout=dropout is not None,
dropout_probability=dropout,
norm_type=norm_type
), block(hidden_size, 1)
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``DuelingHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keyword ``logit`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
Examples:
>>> head = DuelingHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
"""
a = self.A(x)
v = self.V(x)
q_value = a - a.mean(dim=-1, keepdim=True) + v
return {'logit': q_value}
class StochasticDuelingHead(nn.Module):
"""
Overview:
The ``Stochastic Dueling Network`` is proposed in paper ACER (arxiv 1611.01224). \
That is to say, dueling network architecture in continuous action space.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
action_shape: int,
layer_num: int = 1,
a_layer_num: Optional[int] = None,
v_layer_num: Optional[int] = None,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
noise: Optional[bool] = False,
last_tanh: Optional[bool] = True,
) -> None:
"""
Overview:
Init the ``Stochastic DuelingHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``StochasticDuelingHead``.
- action_shape (:obj:`int`): The number of continuous action shape, usually integer value.
- layer_num (:obj:`int`): The number of default layers used in the network to compute action and value \
output.
- a_layer_num (:obj:`int`): The number of layers used in the network to compute action output. Default is \
``layer_num``.
- v_layer_num (:obj:`int`): The number of layers used in the network to compute value output. Default is \
``layer_num``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- noise (:obj:`bool`): Whether use ``NoiseLinearLayer`` as ``layer_fn`` in Q networks' MLP. \
Default ``False``.
- last_tanh (:obj:`bool`): If ``True`` Apply ``tanh`` to actions. Default ``True``.
"""
super(StochasticDuelingHead, self).__init__()
if a_layer_num is None:
a_layer_num = layer_num
if v_layer_num is None:
v_layer_num = layer_num
layer = NoiseLinearLayer if noise else nn.Linear
block = noise_block if noise else fc_block
self.A = nn.Sequential(
MLP(
hidden_size + action_shape,
hidden_size,
hidden_size,
a_layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, 1)
)
self.V = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
v_layer_num,
layer_fn=layer,
activation=activation,
norm_type=norm_type
), block(hidden_size, 1)
)
if last_tanh:
self.tanh = nn.Tanh()
else:
self.tanh = None
def forward(
self,
s: torch.Tensor,
a: torch.Tensor,
mu: torch.Tensor,
sigma: torch.Tensor,
sample_size: int = 10,
) -> Dict[str, torch.Tensor]:
"""
Overview:
Use encoded embedding tensor to run MLP with ``StochasticDuelingHead`` and return the prediction dictionary.
Arguments:
- s (:obj:`torch.Tensor`): Tensor containing input embedding.
- a (:obj:`torch.Tensor`): The original continuous behaviour action.
- mu (:obj:`torch.Tensor`): The ``mu`` gaussian reparameterization output of actor head at current \
timestep.
- sigma (:obj:`torch.Tensor`): The ``sigma`` gaussian reparameterization output of actor head at \
current timestep.
- sample_size (:obj:`int`): The number of samples for continuous action when computing the Q value.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords \
``q_value`` (:obj:`torch.Tensor`) and ``v_value`` (:obj:`torch.Tensor`).
Shapes:
- s: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- a: :math:`(B, A)`, where ``A = action_size``.
- mu: :math:`(B, A)`.
- sigma: :math:`(B, A)`.
- q_value: :math:`(B, 1)`.
- v_value: :math:`(B, 1)`.
Examples:
>>> head = StochasticDuelingHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> a = torch.randn(4, 64)
>>> mu = torch.randn(4, 64)
>>> sigma = torch.ones(4, 64)
>>> outputs = head(inputs, a, mu, sigma)
>>> assert isinstance(outputs, dict)
>>> assert outputs['q_value'].shape == torch.Size([4, 1])
>>> assert outputs['v_value'].shape == torch.Size([4, 1])
"""
batch_size = s.shape[0] # batch_size or batch_size * T
hidden_size = s.shape[1]
action_size = a.shape[1]
state_cat_action = torch.cat((s, a), dim=1) # size (B, action_size + state_size)
a_value = self.A(state_cat_action) # size (B, 1)
v_value = self.V(s) # size (B, 1)
# size (B, sample_size, hidden_size)
expand_s = (torch.unsqueeze(s, 1)).expand((batch_size, sample_size, hidden_size))
# in case for gradient back propagation
dist = Independent(Normal(mu, sigma), 1)
action_sample = dist.rsample(sample_shape=(sample_size, ))
if self.tanh:
action_sample = self.tanh(action_sample)
# (sample_size, B, action_size)->(B, sample_size, action_size)
action_sample = action_sample.permute(1, 0, 2)
# size (B, sample_size, action_size + hidden_size)
state_cat_action_sample = torch.cat((expand_s, action_sample), dim=-1)
a_val_sample = self.A(state_cat_action_sample) # size (B, sample_size, 1)
q_value = v_value + a_value - a_val_sample.mean(dim=1) # size (B, 1)
return {'q_value': q_value, 'v_value': v_value}
class RegressionHead(nn.Module):
"""
Overview:
The ``RegressionHead`` is used to regress continuous variables.
This module is used for generating Q-value (DDPG critic) of continuous actions, \
or state value (A2C/PPO), or directly predicting continuous action (DDPG actor).
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
input_size: int,
output_size: int,
layer_num: int = 2,
final_tanh: Optional[bool] = False,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
hidden_size: int = None,
) -> None:
"""
Overview:
Init the ``RegressionHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``RegressionHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- final_tanh (:obj:`bool`): If ``True`` apply ``tanh`` to output. Default ``False``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
"""
super(RegressionHead, self).__init__()
if hidden_size is None:
hidden_size = input_size
self.main = MLP(input_size, hidden_size, hidden_size, layer_num, activation=activation, norm_type=norm_type)
self.last = nn.Linear(hidden_size, output_size) # for convenience of special initialization
self.final_tanh = final_tanh
if self.final_tanh:
self.tanh = nn.Tanh()
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``RegressionHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keyword ``pred`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- pred: :math:`(B, M)`, where ``M = output_size``.
Examples:
>>> head = RegressionHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['pred'].shape == torch.Size([4, 64])
"""
x = self.main(x)
x = self.last(x)
if self.final_tanh:
x = self.tanh(x)
if x.shape[-1] == 1 and len(x.shape) > 1:
x = x.squeeze(-1)
return {'pred': x}
class ReparameterizationHead(nn.Module):
"""
Overview:
The ``ReparameterizationHead`` is used to generate Gaussian distribution of continuous variable, \
which is parameterized by ``mu`` and ``sigma``.
This module is often used in stochastic policies, such as PPO and SAC.
Interfaces:
``__init__``, ``forward``.
"""
# The "happo" type here is to align with the sigma initialization method of the network in the original HAPPO \
# paper. The code here needs to be optimized later.
default_sigma_type = ['fixed', 'independent', 'conditioned', 'happo']
default_bound_type = ['tanh', None]
def __init__(
self,
input_size: int,
output_size: int,
layer_num: int = 2,
sigma_type: Optional[str] = None,
fixed_sigma_value: Optional[float] = 1.0,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
bound_type: Optional[str] = None,
hidden_size: int = None
) -> None:
"""
Overview:
Init the ``ReparameterizationHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``ReparameterizationHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- sigma_type (:obj:`str`): Sigma type used. Choose among \
``['fixed', 'independent', 'conditioned']``. Default is ``None``.
- fixed_sigma_value (:obj:`float`): When choosing ``fixed`` type, the tensor ``output['sigma']`` \
is filled with this input value. Default is ``None``.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
- bound_type (:obj:`str`): Bound type to apply to output ``mu``. Choose among ``['tanh', None]``. \
Default is ``None``.
"""
super(ReparameterizationHead, self).__init__()
if hidden_size is None:
hidden_size = input_size
self.sigma_type = sigma_type
assert sigma_type in self.default_sigma_type, "Please indicate sigma_type as one of {}".format(
self.default_sigma_type
)
self.bound_type = bound_type
assert bound_type in self.default_bound_type, "Please indicate bound_type as one of {}".format(
self.default_bound_type
)
self.main = MLP(input_size, hidden_size, hidden_size, layer_num, activation=activation, norm_type=norm_type)
self.mu = nn.Linear(hidden_size, output_size)
if self.sigma_type == 'fixed':
self.sigma = torch.full((1, output_size), fixed_sigma_value)
elif self.sigma_type == 'independent': # independent parameter
self.log_sigma_param = nn.Parameter(torch.zeros(1, output_size))
elif self.sigma_type == 'conditioned':
self.log_sigma_layer = nn.Linear(hidden_size, output_size)
elif self.sigma_type == 'happo':
self.sigma_x_coef = 1.
self.sigma_y_coef = 0.5
# This parameter (x_coef, y_coef) refers to the HAPPO paper http://arxiv.org/abs/2109.11251.
self.log_sigma_param = nn.Parameter(torch.ones(1, output_size) * self.sigma_x_coef)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``ReparameterizationHead`` and return the prediction \
dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``mu`` (:obj:`torch.Tensor`) and ``sigma`` \
(:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- mu: :math:`(B, M)`, where ``M = output_size``.
- sigma: :math:`(B, M)`.
Examples:
>>> head = ReparameterizationHead(64, 64, sigma_type='fixed')
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['mu'].shape == torch.Size([4, 64])
>>> assert outputs['sigma'].shape == torch.Size([4, 64])
"""
x = self.main(x)
mu = self.mu(x)
if self.bound_type == 'tanh':
mu = torch.tanh(mu)
if self.sigma_type == 'fixed':
sigma = self.sigma.to(mu.device) + torch.zeros_like(mu) # addition aims to broadcast shape
elif self.sigma_type == 'independent':
log_sigma = self.log_sigma_param + torch.zeros_like(mu) # addition aims to broadcast shape
sigma = torch.exp(log_sigma)
elif self.sigma_type == 'conditioned':
log_sigma = self.log_sigma_layer(x)
sigma = torch.exp(torch.clamp(log_sigma, -20, 2))
elif self.sigma_type == 'happo':
log_sigma = self.log_sigma_param + torch.zeros_like(mu)
sigma = torch.sigmoid(log_sigma / self.sigma_x_coef) * self.sigma_y_coef
return {'mu': mu, 'sigma': sigma}
class PopArtVHead(nn.Module):
"""
Overview:
The ``PopArtVHead`` is used to generate adaptive normalized state value. More information can be found in \
paper Multi-task Deep Reinforcement Learning with PopArt. \
https://arxiv.org/abs/1809.04474 \
This module is used in PPO or IMPALA.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
hidden_size: int,
output_size: int,
layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Init the ``PopArtVHead`` layers according to the provided arguments.
Arguments:
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to ``PopArtVHead``.
- output_size (:obj:`int`): The number of outputs.
- layer_num (:obj:`int`): The number of layers used in the network to compute Q value output.
- activation (:obj:`nn.Module`): The type of activation function to use in MLP. \
If ``None``, then default set activation to ``nn.ReLU()``. Default ``None``.
- norm_type (:obj:`str`): The type of normalization to use. See ``ding.torch_utils.network.fc_block`` \
for more details. Default ``None``.
"""
super(PopArtVHead, self).__init__()
self.popart = PopArt(hidden_size, output_size)
self.Q = nn.Sequential(
MLP(
hidden_size,
hidden_size,
hidden_size,
layer_num,
layer_fn=nn.Linear,
activation=activation,
norm_type=norm_type
), self.popart
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``PopArtVHead`` and return the normalized prediction and \
the unnormalized prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keyword ``pred`` (:obj:`torch.Tensor`) \
and ``unnormalized_pred`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, M)`, where ``M = output_size``.
Examples:
>>> head = PopArtVHead(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict) and outputs['pred'].shape == torch.Size([4, 64]) and \
outputs['unnormalized_pred'].shape == torch.Size([4, 64])
"""
x = self.Q(x)
return x
class AttentionPolicyHead(nn.Module):
"""
Overview:
Cross-attention-type discrete action policy head, which is often used in variable discrete action space.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(self) -> None:
super(AttentionPolicyHead, self).__init__()
def forward(self, key: torch.Tensor, query: torch.Tensor) -> torch.Tensor:
"""
Overview:
Use attention-like mechanism to combine key and query tensor to output discrete action logit.
Arguments:
- key (:obj:`torch.Tensor`): Tensor containing key embedding.
- query (:obj:`torch.Tensor`): Tensor containing query embedding.
Returns:
- logit (:obj:`torch.Tensor`): Tensor containing output discrete action logit.
Shapes:
- key: :math:`(B, N, K)`, where ``B = batch_size``, ``N = possible discrete action choices`` and \
``K = hidden_size``.
- query: :math:`(B, K)`.
- logit: :math:`(B, N)`.
Examples:
>>> head = AttentionPolicyHead()
>>> key = torch.randn(4, 5, 64)
>>> query = torch.randn(4, 64)
>>> logit = head(key, query)
>>> assert logit.shape == torch.Size([4, 5])
.. note::
In this head, we assume that the ``key`` and ``query`` tensor are both normalized.
"""
if len(query.shape) == 2 and len(key.shape) == 3:
query = query.unsqueeze(1)
logit = (key * query).sum(-1)
return logit
class MultiHead(nn.Module):
"""
Overview:
The ``MultiHead`` is used to generate multiple similar results.
For example, we can combine ``Distribution`` and ``MultiHead`` to generate multi-discrete action space logit.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(self, head_cls: type, hidden_size: int, output_size_list: SequenceType, **head_kwargs) -> None:
"""
Overview:
Init the ``MultiHead`` layers according to the provided arguments.
Arguments:
- head_cls (:obj:`type`): The class of head, choose among [``DuelingHead``, ``DistributionHead``, \
''QuatileHead'', ...].
- hidden_size (:obj:`int`): The ``hidden_size`` of the MLP connected to the ``Head``.
- output_size_list (:obj:`int`): Sequence of ``output_size`` for multi discrete action, e.g. ``[2, 3, 5]``.
- head_kwargs: (:obj:`dict`): Dict containing class-specific arguments.
"""
super(MultiHead, self).__init__()
self.pred = nn.ModuleList()
for size in output_size_list:
self.pred.append(head_cls(hidden_size, size, **head_kwargs))
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``MultiHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`) \
corresponding to the logit of each ``output`` each accessed at ``['logit'][i]``.
Shapes:
- x: :math:`(B, N)`, where ``B = batch_size`` and ``N = hidden_size``.
- logit: :math:`(B, Mi)`, where ``Mi = output_size`` corresponding to output ``i``.
Examples:
>>> head = MultiHead(DuelingHead, 64, [2, 3, 5], v_layer_num=2)
>>> inputs = torch.randn(4, 64)
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> # output_size_list is [2, 3, 5] as set
>>> # Therefore each dim of logit is as follows
>>> outputs['logit'][0].shape
>>> torch.Size([4, 2])
>>> outputs['logit'][1].shape
>>> torch.Size([4, 3])
>>> outputs['logit'][2].shape
>>> torch.Size([4, 5])
"""
return lists_to_dicts([m(x) for m in self.pred])
class EnsembleHead(nn.Module):
"""
Overview:
The ``EnsembleHead`` is used to generate Q-value for Q-ensemble in model-based RL algorithms.
Interfaces:
``__init__``, ``forward``.
"""
def __init__(
self,
input_size: int,
output_size: int,
hidden_size: int,
layer_num: int,
ensemble_num: int,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None
) -> None:
super(EnsembleHead, self).__init__()
d = input_size
layers = []
for _ in range(layer_num):
layers.append(
conv1d_block(
d * ensemble_num,
hidden_size * ensemble_num,
kernel_size=1,
stride=1,
groups=ensemble_num,
activation=activation,
norm_type=norm_type
)
)
d = hidden_size
# Adding activation for last layer will lead to train fail
layers.append(
conv1d_block(
hidden_size * ensemble_num,
output_size * ensemble_num,
kernel_size=1,
stride=1,
groups=ensemble_num,
activation=None,
norm_type=None
)
)
self.pred = nn.Sequential(*layers)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to run MLP with ``EnsembleHead`` and return the prediction dictionary.
Arguments:
- x (:obj:`torch.Tensor`): Tensor containing input embedding.
Returns:
- outputs (:obj:`Dict`): Dict containing keyword ``pred`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N * ensemble_num, 1)`, where ``B = batch_size`` and ``N = hidden_size``.
- pred: :math:`(B, M * ensemble_num, 1)`, where ``M = output_size``.
Examples:
>>> head = EnsembleHead(64 * 10, 64 * 10)
>>> inputs = torch.randn(4, 64 * 10, 1) `
>>> outputs = head(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['pred'].shape == torch.Size([10, 64 * 10])
"""
x = self.pred(x).squeeze(-1)
return {'pred': x}
def independent_normal_dist(logits: Union[List, Dict]) -> torch.distributions.Distribution:
"""
Overview:
Convert different types logit to independent normal distribution.
Arguments:
- logits (:obj:`Union[List, Dict]`): The logits to be converted.
Returns:
- dist (:obj:`torch.distributions.Distribution`): The converted normal distribution.
Examples:
>>> logits = [torch.randn(4, 5), torch.ones(4, 5)]
>>> dist = independent_normal_dist(logits)
>>> assert isinstance(dist, torch.distributions.Independent)
>>> assert isinstance(dist.base_dist, torch.distributions.Normal)
>>> assert dist.base_dist.loc.shape == torch.Size([4, 5])
>>> assert dist.base_dist.scale.shape == torch.Size([4, 5])
Raises:
- TypeError: If the type of logits is not ``list`` or ``dict``.
"""
if isinstance(logits, (list, tuple)):
return Independent(Normal(*logits), 1)
elif isinstance(logits, dict):
return Independent(Normal(logits['mu'], logits['sigma']), 1)
else:
raise TypeError("invalid logits type: {}".format(type(logits)))
head_cls_map = {
# discrete
'discrete': DiscreteHead,
'dueling': DuelingHead,
'sdn': StochasticDuelingHead,
'distribution': DistributionHead,
'rainbow': RainbowHead,
'qrdqn': QRDQNHead,
'quantile': QuantileHead,
'fqf': FQFHead,
'branch': BranchingHead,
'attention_policy': AttentionPolicyHead,
# continuous
'regression': RegressionHead,
'reparameterization': ReparameterizationHead,
'popart': PopArtVHead,
'sdn': StochasticDuelingHead,
# multi
'multi': MultiHead,
'ensemble': EnsembleHead,
}
|