File size: 25,187 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
from typing import Union, Dict, Optional, Tuple

import torch
import torch.nn as nn

from ding.utils import squeeze, MODEL_REGISTRY, SequenceType
from ding.torch_utils import MLP
from ding.model.common import RegressionHead


class ATOCAttentionUnit(nn.Module):
    """
    Overview:
        The attention unit of the ATOC network. We now implement it as two-layer MLP, same as the original paper.
    Interface:
        ``__init__``, ``forward``

    .. note::
        "ATOC paper: We use two-layer MLP to implement the attention unit but it is also can be realized by RNN."
    """

    def __init__(self, thought_size: int, embedding_size: int) -> None:
        """
        Overview:
            Initialize the attention unit according to the size of input arguments.
        Arguments:
            - thought_size (:obj:`int`): the size of input thought
            - embedding_size (:obj:`int`): the size of hidden layers
        """
        super(ATOCAttentionUnit, self).__init__()
        self._thought_size = thought_size
        self._hidden_size = embedding_size
        self._output_size = 1
        self._act1 = nn.ReLU()
        self._fc1 = nn.Linear(self._thought_size, self._hidden_size, bias=True)
        self._fc2 = nn.Linear(self._hidden_size, self._hidden_size, bias=True)
        self._fc3 = nn.Linear(self._hidden_size, self._output_size, bias=True)
        self._act2 = nn.Sigmoid()

    def forward(self, data: Union[Dict, torch.Tensor]) -> torch.Tensor:
        """
        Overview:
            Take the thought of agents as input and generate the probability of these agent being initiator
        Arguments:
            - x (:obj:`Union[Dict, torch.Tensor`): the input tensor or dict contain the thoughts tensor
            - ret (:obj:`torch.Tensor`): the output initiator probability
        Shapes:
            - data['thought']: :math:`(M, B, N)`, M is the num of thoughts to integrate,\
                B is batch_size and N is thought size
        Examples:
            >>> attention_unit = ATOCAttentionUnit(64, 64)
            >>> thought = torch.randn(2, 3, 64)
            >>> attention_unit(thought)
        """
        x = data
        if isinstance(data, Dict):
            x = data['thought']
        x = self._fc1(x)
        x = self._act1(x)
        x = self._fc2(x)
        x = self._act1(x)
        x = self._fc3(x)
        x = self._act2(x)
        return x.squeeze(-1)


class ATOCCommunicationNet(nn.Module):
    """
    Overview:
        This ATOC commnication net is a bi-direction LSTM, so it can integrate all the thoughts in the group.
    Interface:
        ``__init__``, ``forward``
    """

    def __init__(self, thought_size: int) -> None:
        """
        Overview:
            Initialize the communication network according to the size of input arguments.
        Arguments:
            - thought_size (:obj:`int`): the size of input thought

        .. note::

            communication hidden size should be half of the actor_hidden_size because of the bi-direction lstm
        """
        super(ATOCCommunicationNet, self).__init__()
        assert thought_size % 2 == 0
        self._thought_size = thought_size
        self._comm_hidden_size = thought_size // 2
        self._bi_lstm = nn.LSTM(self._thought_size, self._comm_hidden_size, bidirectional=True)

    def forward(self, data: Union[Dict, torch.Tensor]):
        """
        Overview:
            The forward of ATOCCommunicationNet integrates thoughts in the group.
        Arguments:
            - x (:obj:`Union[Dict, torch.Tensor`): the input tensor or dict contain the thoughts tensor
            - out (:obj:`torch.Tensor`): the integrated thoughts
        Shapes:
            - data['thoughts']: :math:`(M, B, N)`, M is the num of thoughts to integrate,\
                B is batch_size and N is thought size
        Examples:
            >>> comm_net = ATOCCommunicationNet(64)
            >>> thoughts = torch.randn(2, 3, 64)
            >>> comm_net(thoughts)
        """
        self._bi_lstm.flatten_parameters()
        x = data
        if isinstance(data, Dict):
            x = data['thoughts']
        out, _ = self._bi_lstm(x)
        return out


class ATOCActorNet(nn.Module):
    """
    Overview:
        The actor network of ATOC.
    Interface:
        ``__init__``, ``forward``

        .. note::
            "ATOC paper: The neural networks use ReLU and batch normalization for some hidden layers."
    """

    def __init__(
        self,
        obs_shape: Union[Tuple, int],
        thought_size: int,
        action_shape: int,
        n_agent: int,
        communication: bool = True,
        agent_per_group: int = 2,
        initiator_threshold: float = 0.5,
        attention_embedding_size: int = 64,
        actor_1_embedding_size: Union[int, None] = None,
        actor_2_embedding_size: Union[int, None] = None,
        activation: Optional[nn.Module] = nn.ReLU(),
        norm_type: Optional[str] = None,
    ):
        """
        Overview:
            Initialize the actor network of ATOC
        Arguments:
            - obs_shape(:obj:`Union[Tuple, int]`): the observation size
            - thought_size (:obj:`int`): the size of thoughts
            - action_shape (:obj:`int`): the action size
            - n_agent (:obj:`int`): the num of agents
            - agent_per_group (:obj:`int`): the num of agent in each group
            - initiator_threshold (:obj:`float`): the threshold of becoming an initiator, default set to 0.5
            - attention_embedding_size (obj:`int`): the embedding size of attention unit, default set to 64
            - actor_1_embedding_size (:obj:`Union[int, None]`): the size of embedding size of actor network part1, \
                if None, then default set to thought size
            - actor_2_embedding_size (:obj:`Union[int, None]`): the size of embedding size of actor network part2, \
                if None, then default set to thought size
        """
        super(ATOCActorNet, self).__init__()
        # now only support obs_shape of shape (O_dim, )
        self._obs_shape = squeeze(obs_shape)
        self._thought_size = thought_size
        self._act_shape = action_shape
        self._n_agent = n_agent
        self._communication = communication
        self._agent_per_group = agent_per_group
        self._initiator_threshold = initiator_threshold
        if not actor_1_embedding_size:
            actor_1_embedding_size = self._thought_size
        if not actor_2_embedding_size:
            actor_2_embedding_size = self._thought_size

        # Actor Net(I)
        self.actor_1 = MLP(
            self._obs_shape,
            actor_1_embedding_size,
            self._thought_size,
            layer_num=2,
            activation=activation,
            norm_type=norm_type
        )

        # Actor Net(II)
        self.actor_2 = nn.Sequential(
            nn.Linear(self._thought_size * 2, actor_2_embedding_size), activation,
            RegressionHead(
                actor_2_embedding_size, self._act_shape, 2, final_tanh=True, activation=activation, norm_type=norm_type
            )
        )

        # Communication
        if self._communication:
            self.attention = ATOCAttentionUnit(self._thought_size, attention_embedding_size)
            self.comm_net = ATOCCommunicationNet(self._thought_size)

    def forward(self, obs: torch.Tensor) -> Dict:
        """
        Overview:
            Take the input obs, and calculate the corresponding action, group, initiator_prob, thoughts, etc...
        Arguments:
            - obs (:obj:`Dict`): the input obs containing the observation
        Returns:
            - ret (:obj:`Dict`): the returned output, including action, group, initiator_prob, is_initiator, \
                new_thoughts and old_thoughts
        ReturnsKeys:
            - necessary: ``action``
            - optional: ``group``, ``initiator_prob``, ``is_initiator``, ``new_thoughts``, ``old_thoughts``
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size
            - action (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is action size
            - group (:obj:`torch.Tensor`): :math:`(B, A, A)`
            - initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)`
            - is_initiator (:obj:`torch.Tensor`): :math:`(B, A)`
            - new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`
            - old_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`
        Examples:
            >>> actor_net = ATOCActorNet(64, 64, 64, 3)
            >>> obs = torch.randn(2, 3, 64)
            >>> actor_net(obs)
        """
        assert len(obs.shape) == 3
        self._cur_batch_size = obs.shape[0]
        B, A, N = obs.shape
        assert A == self._n_agent
        assert N == self._obs_shape

        current_thoughts = self.actor_1(obs)  # B, A, thought size

        if self._communication:
            old_thoughts = current_thoughts.clone().detach()
            init_prob, is_initiator, group = self._get_initiate_group(old_thoughts)

            new_thoughts = self._get_new_thoughts(current_thoughts, group, is_initiator)
        else:
            new_thoughts = current_thoughts
        action = self.actor_2(torch.cat([current_thoughts, new_thoughts], dim=-1))['pred']

        if self._communication:
            return {
                'action': action,
                'group': group,
                'initiator_prob': init_prob,
                'is_initiator': is_initiator,
                'new_thoughts': new_thoughts,
                'old_thoughts': old_thoughts,
            }
        else:
            return {'action': action}

    def _get_initiate_group(self, current_thoughts):
        """
        Overview:
            Calculate the initiator probability, group and is_initiator
        Arguments:
            - current_thoughts (:obj:`torch.Tensor`): tensor of current thoughts
        Returns:
            - init_prob (:obj:`torch.Tensor`): tesnor of initiator probability
            - is_initiator (:obj:`torch.Tensor`): tensor of is initiator
            - group (:obj:`torch.Tensor`): tensor of group
        Shapes:
            - current_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is thought size
            - init_prob (:obj:`torch.Tensor`): :math:`(B, A)`
            - is_initiator (:obj:`torch.Tensor`): :math:`(B, A)`
            - group (:obj:`torch.Tensor`): :math:`(B, A, A)`
        Examples:
            >>> actor_net = ATOCActorNet(64, 64, 64, 3)
            >>> current_thoughts = torch.randn(2, 3, 64)
            >>> actor_net._get_initiate_group(current_thoughts)
        """
        if not self._communication:
            raise NotImplementedError
        init_prob = self.attention(current_thoughts)  # B, A
        is_initiator = (init_prob > self._initiator_threshold)
        B, A = init_prob.shape[:2]

        thoughts_pair_dot = current_thoughts.bmm(current_thoughts.transpose(1, 2))
        thoughts_square = thoughts_pair_dot.diagonal(0, 1, 2)
        curr_thought_dists = thoughts_square.unsqueeze(1) - 2 * thoughts_pair_dot + thoughts_square.unsqueeze(2)

        group = torch.zeros(B, A, A).to(init_prob.device)

        # "considers the agents in its observable field"
        # "initiator first chooses collaborators from agents who have not been selected,
        #  then from agents selected by other initiators,
        #  finally from other initiators"
        # "all based on proximity"

        # roughly choose m closest as group
        for b in range(B):
            for i in range(A):
                if is_initiator[b][i]:
                    index_seq = curr_thought_dists[b][i].argsort()
                    index_seq = index_seq[:self._agent_per_group]
                    group[b][i][index_seq] = 1
        return init_prob, is_initiator, group

    def _get_new_thoughts(self, current_thoughts, group, is_initiator):
        """
        Overview:
            Calculate the new thoughts according to current thoughts, group and is_initiator
        Arguments:
            - current_thoughts (:obj:`torch.Tensor`): tensor of current thoughts
            - group (:obj:`torch.Tensor`): tensor of group
            - is_initiator (:obj:`torch.Tensor`): tensor of is initiator
        Returns:
            - new_thoughts (:obj:`torch.Tensor`): tensor of new thoughts
        Shapes:
            - current_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is thought size
            - group: (:obj:`torch.Tensor`): :math:`(B, A, A)`
            - is_initiator (:obj:`torch.Tensor`): :math:`(B, A)`
            - new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`
        Examples:
            >>> actor_net = ATOCActorNet(64, 64, 64, 3)
            >>> current_thoughts = torch.randn(2, 3, 64)
            >>> group = torch.randn(2, 3, 3)
            >>> is_initiator = torch.randn(2, 3)
            >>> actor_net._get_new_thoughts(current_thoughts, group, is_initiator)
        """
        if not self._communication:
            raise NotImplementedError
        B, A = current_thoughts.shape[:2]
        new_thoughts = current_thoughts.detach().clone()
        if len(torch.nonzero(is_initiator)) == 0:
            return new_thoughts

        # TODO(nyz) execute communication serially for shared agent in different group
        thoughts_to_commute = []
        for b in range(B):
            for i in range(A):
                if is_initiator[b][i]:
                    tmp = []
                    for j in range(A):
                        if group[b][i][j]:
                            tmp.append(new_thoughts[b][j])
                    thoughts_to_commute.append(torch.stack(tmp, dim=0))
        thoughts_to_commute = torch.stack(thoughts_to_commute, dim=1)  # agent_per_group, B_, N
        integrated_thoughts = self.comm_net(thoughts_to_commute)
        b_count = 0
        for b in range(B):
            for i in range(A):
                if is_initiator[b][i]:
                    j_count = 0
                    for j in range(A):
                        if group[b][i][j]:
                            new_thoughts[b][j] = integrated_thoughts[j_count][b_count]
                            j_count += 1
                    b_count += 1
        return new_thoughts


@MODEL_REGISTRY.register('atoc')
class ATOC(nn.Module):
    """
    Overview:
        The QAC network of ATOC, a kind of extension of DDPG for MARL.
        Learning Attentional Communication for Multi-Agent Cooperation
        https://arxiv.org/abs/1805.07733
    Interface:
        ``__init__``, ``forward``, ``compute_critic``, ``compute_actor``, ``optimize_actor_attention``
    """
    mode = ['compute_actor', 'compute_critic', 'optimize_actor_attention']

    def __init__(
            self,
            obs_shape: Union[int, SequenceType],
            action_shape: Union[int, SequenceType],
            thought_size: int,
            n_agent: int,
            communication: bool = True,
            agent_per_group: int = 2,
            actor_1_embedding_size: Union[int, None] = None,
            actor_2_embedding_size: Union[int, None] = None,
            critic_head_hidden_size: int = 64,
            critic_head_layer_num: int = 2,
            activation: Optional[nn.Module] = nn.ReLU(),
            norm_type: Optional[str] = None,
    ) -> None:
        """
        Overview:
            Initialize the ATOC QAC network
        Arguments:
            - obs_shape(:obj:`Union[Tuple, int]`): the observation space shape
            - thought_size (:obj:`int`): the size of thoughts
            - action_shape (:obj:`int`): the action space shape
            - n_agent (:obj:`int`): the num of agents
            - agent_per_group (:obj:`int`): the num of agent in each group
        """
        super(ATOC, self).__init__()
        self._communication = communication

        self.actor = ATOCActorNet(
            obs_shape,
            thought_size,
            action_shape,
            n_agent,
            communication,
            agent_per_group,
            actor_1_embedding_size=actor_1_embedding_size,
            actor_2_embedding_size=actor_2_embedding_size
        )
        self.critic = nn.Sequential(
            nn.Linear(obs_shape + action_shape, critic_head_hidden_size), activation,
            RegressionHead(
                critic_head_hidden_size,
                1,
                critic_head_layer_num,
                final_tanh=False,
                activation=activation,
                norm_type=norm_type,
            )
        )

    def _compute_delta_q(self, obs: torch.Tensor, actor_outputs: Dict) -> torch.Tensor:
        """
        Overview:
            calculate the delta_q according to obs and actor_outputs
        Arguments:
            - obs (:obj:`torch.Tensor`): the observations
            - actor_outputs (:obj:`dict`): the output of actors
            - delta_q (:obj:`Dict`): the calculated delta_q
        Returns:
            - delta_q (:obj:`Dict`): the calculated delta_q
        ArgumentsKeys:
            - necessary: ``new_thoughts``, ``old_thoughts``, ``group``, ``is_initiator``
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size
            - actor_outputs (:obj:`Dict`): the output of actor network, including  ``action``, ``new_thoughts``, \
                ``old_thoughts``, ``group``, ``initiator_prob``, ``is_initiator``
            - action (:obj:`torch.Tensor`): :math:`(B, A, M)` where M is action size
            - new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` where M is thought size
            - old_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)` where M is thought size
            - group (:obj:`torch.Tensor`): :math:`(B, A, A)`
            - initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)`
            - is_initiator (:obj:`torch.Tensor`): :math:`(B, A)`
            - delta_q (:obj:`torch.Tensor`): :math:`(B, A)`
        Examples:
            >>> net = ATOC(64, 64, 64, 3)
            >>> obs = torch.randn(2, 3, 64)
            >>> actor_outputs = net.compute_actor(obs)
            >>> net._compute_delta_q(obs, actor_outputs)
        """
        if not self._communication:
            raise NotImplementedError
        assert len(obs.shape) == 3
        new_thoughts, old_thoughts, group, is_initiator = actor_outputs['new_thoughts'], actor_outputs[
            'old_thoughts'], actor_outputs['group'], actor_outputs['is_initiator']
        B, A = new_thoughts.shape[:2]
        curr_delta_q = torch.zeros(B, A).to(new_thoughts.device)
        with torch.no_grad():
            for b in range(B):
                for i in range(A):
                    if not is_initiator[b][i]:
                        continue
                    q_group = []
                    actual_q_group = []
                    for j in range(A):
                        if not group[b][i][j]:
                            continue
                        before_update_action_j = self.actor.actor_2(
                            torch.cat([old_thoughts[b][j], old_thoughts[b][j]], dim=-1)
                        )
                        after_update_action_j = self.actor.actor_2(
                            torch.cat([old_thoughts[b][j], new_thoughts[b][j]], dim=-1)
                        )
                        before_update_input = torch.cat([obs[b][j], before_update_action_j['pred']], dim=-1)
                        before_update_Q_j = self.critic(before_update_input)['pred']
                        after_update_input = torch.cat([obs[b][j], after_update_action_j['pred']], dim=-1)
                        after_update_Q_j = self.critic(after_update_input)['pred']
                        q_group.append(before_update_Q_j)
                        actual_q_group.append(after_update_Q_j)
                    q_group = torch.stack(q_group)
                    actual_q_group = torch.stack(actual_q_group)
                    curr_delta_q[b][i] = actual_q_group.mean() - q_group.mean()
        return curr_delta_q

    def compute_actor(self, obs: torch.Tensor, get_delta_q: bool = False) -> Dict[str, torch.Tensor]:
        '''
        Overview:
            compute the action according to inputs, call the _compute_delta_q function to compute delta_q
        Arguments:
            - obs (:obj:`torch.Tensor`): observation
            - get_delta_q (:obj:`bool`) : whether need to get delta_q
        Returns:
            - outputs (:obj:`Dict`): the output of actor network and delta_q
        ReturnsKeys:
            - necessary: ``action``
            - optional: ``group``, ``initiator_prob``, ``is_initiator``, ``new_thoughts``, ``old_thoughts``, ``delta_q``
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size
            - action (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is action size
            - group (:obj:`torch.Tensor`): :math:`(B, A, A)`
            - initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)`
            - is_initiator (:obj:`torch.Tensor`): :math:`(B, A)`
            - new_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`
            - old_thoughts (:obj:`torch.Tensor`): :math:`(B, A, M)`
            - delta_q (:obj:`torch.Tensor`): :math:`(B, A)`
        Examples:
            >>> net = ATOC(64, 64, 64, 3)
            >>> obs = torch.randn(2, 3, 64)
            >>> net.compute_actor(obs)
        '''
        outputs = self.actor(obs)
        if get_delta_q and self._communication:
            delta_q = self._compute_delta_q(obs, outputs)
            outputs['delta_q'] = delta_q
        return outputs

    def compute_critic(self, inputs: Dict) -> Dict:
        """
        Overview:
            compute the q_value according to inputs
        Arguments:
            - inputs (:obj:`Dict`): the inputs contain the obs and action
        Returns:
            - outputs (:obj:`Dict`): the output of critic network
        ArgumentsKeys:
            - necessary: ``obs``, ``action``
        ReturnsKeys:
            - necessary: ``q_value``
        Shapes:
            - obs (:obj:`torch.Tensor`): :math:`(B, A, N)`, where B is batch size, A is agent num, N is obs size
            - action (:obj:`torch.Tensor`): :math:`(B, A, M)`, where M is action size
            - q_value (:obj:`torch.Tensor`): :math:`(B, A)`
        Examples:
            >>> net = ATOC(64, 64, 64, 3)
            >>> obs = torch.randn(2, 3, 64)
            >>> action = torch.randn(2, 3, 64)
            >>> net.compute_critic({'obs': obs, 'action': action})
        """
        obs, action = inputs['obs'], inputs['action']
        if len(action.shape) == 2:  # (B, A) -> (B, A, 1)
            action = action.unsqueeze(2)
        x = torch.cat([obs, action], dim=-1)
        x = self.critic(x)['pred']
        return {'q_value': x}

    def optimize_actor_attention(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Overview:
            return the actor attention loss
        Arguments:
            - inputs (:obj:`Dict`): the inputs contain the delta_q, initiator_prob, and is_initiator
        Returns
            - loss (:obj:`Dict`): the loss of actor attention unit
        ArgumentsKeys:
            - necessary: ``delta_q``, ``initiator_prob``, ``is_initiator``
        ReturnsKeys:
            - necessary: ``loss``
        Shapes:
            - delta_q (:obj:`torch.Tensor`): :math:`(B, A)`
            - initiator_prob (:obj:`torch.Tensor`): :math:`(B, A)`
            - is_initiator (:obj:`torch.Tensor`): :math:`(B, A)`
            - loss (:obj:`torch.Tensor`): :math:`(1)`
        Examples:
            >>> net = ATOC(64, 64, 64, 3)
            >>> delta_q = torch.randn(2, 3)
            >>> initiator_prob = torch.randn(2, 3)
            >>> is_initiator = torch.randn(2, 3)
            >>> net.optimize_actor_attention(
            >>>     {'delta_q': delta_q,
            >>>      'initiator_prob': initiator_prob,
            >>>      'is_initiator': is_initiator})
        """
        if not self._communication:
            raise NotImplementedError
        delta_q = inputs['delta_q'].reshape(-1)
        init_prob = inputs['initiator_prob'].reshape(-1)
        is_init = inputs['is_initiator'].reshape(-1)
        delta_q = delta_q[is_init.nonzero()]
        init_prob = init_prob[is_init.nonzero()]
        init_prob = 0.9 * init_prob + 0.05

        # judge to avoid nan
        if init_prob.shape == (0, 1):
            actor_attention_loss = torch.FloatTensor([-0.0]).to(delta_q.device)
            actor_attention_loss.requires_grad = True
        else:
            actor_attention_loss = -delta_q * \
                torch.log(init_prob) - (1 - delta_q) * torch.log(1 - init_prob)
        return {'loss': actor_attention_loss.mean()}

    def forward(self, inputs: Union[torch.Tensor, Dict], mode: str, **kwargs) -> Dict:
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs, **kwargs)