File size: 9,608 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import Union, Dict, Optional, List
from easydict import EasyDict
import numpy as np
import torch
import torch.nn as nn

from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import RegressionHead, ReparameterizationHead
from .vae import VanillaVAE


@MODEL_REGISTRY.register('bcq')
class BCQ(nn.Module):
    """
    Overview:
        Model of BCQ (Batch-Constrained deep Q-learning).
        Off-Policy Deep Reinforcement Learning without Exploration.
        https://arxiv.org/abs/1812.02900
    Interface:
        ``forward``, ``compute_actor``, ``compute_critic``, ``compute_vae``, ``compute_eval``
    Property:
        ``mode``
    """

    mode = ['compute_actor', 'compute_critic', 'compute_vae', 'compute_eval']

    def __init__(
            self,
            obs_shape: Union[int, SequenceType],
            action_shape: Union[int, SequenceType, EasyDict],
            actor_head_hidden_size: List = [400, 300],
            critic_head_hidden_size: List = [400, 300],
            activation: Optional[nn.Module] = nn.ReLU(),
            vae_hidden_dims: List = [750, 750],
            phi: float = 0.05
    ) -> None:
        """
        Overview:
            Initialize neural network, i.e. agent Q network and actor.
        Arguments:
            - obs_shape (:obj:`int`): the dimension of observation state
            - action_shape (:obj:`int`): the dimension of action shape
            - actor_hidden_size (:obj:`list`): the list of hidden size of actor
            - critic_hidden_size (:obj:'list'): the list of hidden size of critic
            - activation (:obj:`nn.Module`): Activation function in network, defaults to nn.ReLU().
            - vae_hidden_dims (:obj:`list`): the list of hidden size of vae
        """
        super(BCQ, self).__init__()
        obs_shape: int = squeeze(obs_shape)
        action_shape = squeeze(action_shape)
        self.action_shape = action_shape
        self.input_size = obs_shape
        self.phi = phi

        critic_input_size = self.input_size + action_shape
        self.critic = nn.ModuleList()
        for _ in range(2):
            net = []
            d = critic_input_size
            for dim in critic_head_hidden_size:
                net.append(nn.Linear(d, dim))
                net.append(activation)
                d = dim
            net.append(nn.Linear(d, 1))
            self.critic.append(nn.Sequential(*net))

        net = []
        d = critic_input_size
        for dim in actor_head_hidden_size:
            net.append(nn.Linear(d, dim))
            net.append(activation)
            d = dim
        net.append(nn.Linear(d, 1))
        self.actor = nn.Sequential(*net)

        self.vae = VanillaVAE(action_shape, obs_shape, action_shape * 2, vae_hidden_dims)

    def forward(self, inputs: Dict[str, torch.Tensor], mode: str) -> Dict[str, torch.Tensor]:
        """
        Overview:
            The unique execution (forward) method of BCQ method, and one can indicate different modes to implement \
            different computation graph, including ``compute_actor`` and ``compute_critic`` in BCQ.
        Mode compute_actor:
            Arguments:
                - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
            Returns:
                - output (:obj:`Dict`): Output dict data, including action tensor.
        Mode compute_critic:
            Arguments:
                - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
            Returns:
                - output (:obj:`Dict`): Output dict data, including q_value tensor.
        Mode compute_vae:
            Arguments:
                - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
            Returns:
                - outputs (:obj:`Dict`): Dict containing keywords ``recons_action`` \
                (:obj:`torch.Tensor`), ``prediction_residual`` (:obj:`torch.Tensor`), \
                ``input`` (:obj:`torch.Tensor`), ``mu`` (:obj:`torch.Tensor`), \
                ``log_var`` (:obj:`torch.Tensor`) and ``z`` (:obj:`torch.Tensor`).
        Mode compute_eval:
            Arguments:
                - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
            Returns:
                - output (:obj:`Dict`): Output dict data, including action tensor.
        Examples:
            >>> inputs = {'obs': torch.randn(4, 32), 'action': torch.randn(4, 6)}
            >>> model = BCQ(32, 6)
            >>> outputs = model(inputs, mode='compute_actor')
            >>> outputs = model(inputs, mode='compute_critic')
            >>> outputs = model(inputs, mode='compute_vae')
            >>> outputs = model(inputs, mode='compute_eval')

        .. note::
            For specific examples, one can refer to API doc of ``compute_actor`` and ``compute_critic`` respectively.
        """
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs)

    def compute_critic(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Use critic network to compute q value.
        Arguments:
            - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
        Returns:
            - outputs (:obj:`Dict`): Dict containing keywords ``q_value`` (:obj:`torch.Tensor`).
        Shapes:
            - inputs (:obj:`Dict`): :math:`(B, N, D)`, where B is batch size, N is sample number, D is input dimension.
            - outputs (:obj:`Dict`): :math:`(B, N)`.
        Examples:
            >>> inputs = {'obs': torch.randn(4, 32), 'action': torch.randn(4, 6)}
            >>> model = BCQ(32, 6)
            >>> outputs = model.compute_critic(inputs)
        """
        obs, action = inputs['obs'], inputs['action']
        if len(action.shape) == 1:  # (B, ) -> (B, 1)
            action = action.unsqueeze(1)
        x = torch.cat([obs, action], dim=-1)
        x = [m(x).squeeze() for m in self.critic]
        return {'q_value': x}

    def compute_actor(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, Union[torch.Tensor, Dict[str, torch.Tensor]]]:
        """
        Overview:
            Use actor network to compute action.
        Arguments:
            - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
        Returns:
            - outputs (:obj:`Dict`): Dict containing keywords ``action`` (:obj:`torch.Tensor`).
        Shapes:
            - inputs (:obj:`Dict`): :math:`(B, N, D)`, where B is batch size, N is sample number, D is input dimension.
            - outputs (:obj:`Dict`): :math:`(B, N)`.
        Examples:
            >>> inputs = {'obs': torch.randn(4, 32), 'action': torch.randn(4, 6)}
            >>> model = BCQ(32, 6)
            >>> outputs = model.compute_actor(inputs)
        """
        input = torch.cat([inputs['obs'], inputs['action']], -1)
        x = self.actor(input)
        action = self.phi * 1 * torch.tanh(x)
        action = (action + inputs['action']).clamp(-1, 1)
        return {'action': action}

    def compute_vae(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Use vae network to compute action.
        Arguments:
            - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
        Returns:
            - outputs (:obj:`Dict`): Dict containing keywords ``recons_action`` (:obj:`torch.Tensor`), \
                ``prediction_residual`` (:obj:`torch.Tensor`), ``input`` (:obj:`torch.Tensor`), \
                ``mu`` (:obj:`torch.Tensor`), ``log_var`` (:obj:`torch.Tensor`) and ``z`` (:obj:`torch.Tensor`).
        Shapes:
            - inputs (:obj:`Dict`): :math:`(B, N, D)`, where B is batch size, N is sample number, D is input dimension.
            - outputs (:obj:`Dict`): :math:`(B, N)`.
        Examples:
            >>> inputs = {'obs': torch.randn(4, 32), 'action': torch.randn(4, 6)}
            >>> model = BCQ(32, 6)
            >>> outputs = model.compute_vae(inputs)
        """
        return self.vae.forward(inputs)

    def compute_eval(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Use actor network to compute action.
        Arguments:
            - inputs (:obj:`Dict`): Input dict data, including obs and action tensor.
        Returns:
            - outputs (:obj:`Dict`): Dict containing keywords ``action`` (:obj:`torch.Tensor`).
        Shapes:
            - inputs (:obj:`Dict`): :math:`(B, N, D)`, where B is batch size, N is sample number, D is input dimension.
            - outputs (:obj:`Dict`): :math:`(B, N)`.
        Examples:
            >>> inputs = {'obs': torch.randn(4, 32), 'action': torch.randn(4, 6)}
            >>> model = BCQ(32, 6)
            >>> outputs = model.compute_eval(inputs)
        """
        obs = inputs['obs']
        obs_rep = obs.clone().unsqueeze(0).repeat_interleave(100, dim=0)
        z = torch.randn((obs_rep.shape[0], obs_rep.shape[1], self.action_shape * 2)).to(obs.device).clamp(-0.5, 0.5)
        sample_action = self.vae.decode_with_obs(z, obs_rep)['reconstruction_action']
        action = self.compute_actor({'obs': obs_rep, 'action': sample_action})['action']
        q = self.compute_critic({'obs': obs_rep, 'action': action})['q_value'][0]
        idx = q.argmax(dim=0).unsqueeze(0).unsqueeze(-1)
        idx = idx.repeat_interleave(action.shape[-1], dim=-1)
        action = action.gather(0, idx).squeeze()
        return {'action': action}