File size: 25,740 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
from typing import Union, List, Dict
from collections import namedtuple
import numpy as np
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from ding.utils import list_split, MODEL_REGISTRY, squeeze, SequenceType
from ding.torch_utils.network.diffusion import extract, cosine_beta_schedule, apply_conditioning, \
DiffusionUNet1d, TemporalValue
Sample = namedtuple('Sample', 'trajectories values chains')
def default_sample_fn(model, x, cond, t):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = model.p_mean_variance(
x=x,
cond=cond,
t=t,
)
noise = 0.5 * torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1, ) * (len(x.shape) - 1)))
values = torch.zeros(len(x), device=device)
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, values
def get_guide_output(guide, x, cond, t):
x.requires_grad_()
y = guide(x, cond, t).squeeze(dim=-1)
grad = torch.autograd.grad([y.sum()], [x])[0]
x.detach()
return y, grad
def n_step_guided_p_sample(
model,
x,
cond,
t,
guide,
scale=0.001,
t_stopgrad=0,
n_guide_steps=1,
scale_grad_by_std=True,
):
model_log_variance = extract(model.posterior_log_variance_clipped, t, x.shape)
model_std = torch.exp(0.5 * model_log_variance)
model_var = torch.exp(model_log_variance)
for _ in range(n_guide_steps):
with torch.enable_grad():
y, grad = get_guide_output(guide, x, cond, t)
if scale_grad_by_std:
grad = model_var * grad
grad[t < t_stopgrad] = 0
x = x + scale * grad
x = apply_conditioning(x, cond, model.action_dim)
model_mean, _, model_log_variance = model.p_mean_variance(x=x, cond=cond, t=t)
# no noise when t == 0
noise = torch.randn_like(x)
noise[t == 0] = 0
return model_mean + model_std * noise, y
class GaussianDiffusion(nn.Module):
"""
Overview:
Gaussian diffusion model
Arguments:
- model (:obj:`str`): type of model
- model_cfg (:obj:'dict') config of model
- horizon (:obj:`int`): horizon of trajectory
- obs_dim (:obj:`int`): Dim of the ovservation
- action_dim (:obj:`int`): Dim of the ation
- n_timesteps (:obj:`int`): Number of timesteps
- predict_epsilon (:obj:'bool'): Whether predict epsilon
- loss_discount (:obj:'float'): discount of loss
- clip_denoised (:obj:'bool'): Whether use clip_denoised
- action_weight (:obj:'float'): weight of action
- loss_weights (:obj:'dict'): weight of loss
"""
def __init__(
self,
model: str,
model_cfg: dict,
horizon: int,
obs_dim: Union[int, SequenceType],
action_dim: Union[int, SequenceType],
n_timesteps: int = 1000,
predict_epsilon: bool = True,
loss_discount: float = 1.0,
clip_denoised: bool = False,
action_weight: float = 1.0,
loss_weights: dict = None,
) -> None:
super().__init__()
self.horizon = horizon
self.obs_dim = obs_dim
self.action_dim = action_dim
self.transition_dim = obs_dim + action_dim
if type(model) == str:
model = eval(model)
self.model = model(**model_cfg)
self.predict_epsilon = predict_epsilon
self.clip_denoised = clip_denoised
betas = cosine_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = int(n_timesteps)
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# log calculation clipped because the posterior variance
# is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1', betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer(
'posterior_mean_coef2', (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)
)
self.loss_weights = self.get_loss_weights(action_weight, loss_discount, loss_weights)
def get_loss_weights(self, action_weight: float, discount: float, weights_dict: dict):
"""
Overview:
sets loss coefficients for trajectory
Arguments:
- action_weight (:obj:'float') coefficient on first action loss
- discount (:obj:'float') multiplies t^th timestep of trajectory loss by discount**t
- weights_dict (:obj:'dict') { i: c } multiplies dimension i of observation loss by c
"""
self.action_weight = action_weight
dim_weights = torch.ones(self.transition_dim, dtype=torch.float32)
# set loss coefficients for dimensions of observation
if weights_dict is None:
weights_dict = {}
for ind, w in weights_dict.items():
dim_weights[self.action_dim + ind] *= w
# decay loss with trajectory timestep: discount**t
discounts = discount ** torch.arange(self.horizon, dtype=torch.float)
discounts = discounts / discounts.mean()
loss_weights = torch.einsum('h,t->ht', discounts, dim_weights)
# manually set a0 weight
loss_weights[0, :self.action_dim] = action_weight
return loss_weights
def predict_start_from_noise(self, x_t, t, noise):
"""
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
"""
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
else:
return noise
def q_posterior(self, x_start, x_t, t):
"""
Overview:
give noise and step, compute mean, variance.
Arguments:
x_start (:obj:'tensor') noise trajectory in timestep 0
x_t (:obj:'tuple') noise trajectory in timestep t
t (:obj:'int') timestep of diffusion step
"""
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, cond, t):
x_recon = self.predict_start_from_noise(x, t=t, noise=self.model(x, cond, t))
if self.clip_denoised:
x_recon.clamp_(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample_loop(self, shape, cond, return_chain=False, sample_fn=default_sample_fn, plan_size=1, **sample_kwargs):
device = self.betas.device
batch_size = shape[0]
x = torch.randn(shape, device=device)
x = apply_conditioning(x, cond, self.action_dim)
chain = [x] if return_chain else None
for i in reversed(range(0, self.n_timesteps)):
t = torch.full((batch_size, ), i, device=device, dtype=torch.long)
x, values = sample_fn(self, x, cond, t, **sample_kwargs)
x = apply_conditioning(x, cond, self.action_dim)
if return_chain:
chain.append(x)
values = values.reshape(-1, plan_size, *values.shape[1:])
x = x.reshape(-1, plan_size, *x.shape[1:])
if plan_size > 1:
inds = torch.argsort(values, dim=1, descending=True)
x = x[torch.arange(x.size(0)).unsqueeze(1), inds]
values = values[torch.arange(values.size(0)).unsqueeze(1), inds]
if return_chain:
chain = torch.stack(chain, dim=1)
return Sample(x, values, chain)
@torch.no_grad()
def conditional_sample(self, cond, horizon=None, **sample_kwargs):
"""
conditions : [ (time, state), ... ]
"""
device = self.betas.device
batch_size = len(cond[0])
horizon = horizon or self.horizon
shape = (batch_size, horizon, self.transition_dim)
return self.p_sample_loop(shape, cond, **sample_kwargs)
def q_sample(self, x_start, t, noise=None):
"""
Arguments:
conditions (:obj:'tuple') [ (time, state), ... ] conditions of diffusion
t (:obj:'int') timestep of diffusion
noise (:obj:'tensor.float') timestep's noise of diffusion
"""
if noise is None:
noise = torch.randn_like(x_start)
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, cond, t):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_noisy = apply_conditioning(x_noisy, cond, self.action_dim)
x_recon = self.model(x_noisy, cond, t)
x_recon = apply_conditioning(x_recon, cond, self.action_dim)
assert noise.shape == x_recon.shape
if self.predict_epsilon:
loss = F.mse_loss(x_recon, noise, reduction='none')
a0_loss = (loss[:, 0, :self.action_dim] / self.loss_weights[0, :self.action_dim].to(loss.device)).mean()
loss = (loss * self.loss_weights.to(loss.device)).mean()
else:
loss = F.mse_loss(x_recon, x_start, reduction='none')
a0_loss = (loss[:, 0, :self.action_dim] / self.loss_weights[0, :self.action_dim].to(loss.device)).mean()
loss = (loss * self.loss_weights.to(loss.device)).mean()
return loss, a0_loss
def forward(self, cond, *args, **kwargs):
return self.conditional_sample(cond, *args, **kwargs)
class ValueDiffusion(GaussianDiffusion):
"""
Overview:
Gaussian diffusion model for value function.
"""
def p_losses(self, x_start, cond, target, t):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_noisy = apply_conditioning(x_noisy, cond, self.action_dim)
pred = self.model(x_noisy, cond, t)
loss = F.mse_loss(pred, target, reduction='none').mean()
log = {
'mean_pred': pred.mean().item(),
'max_pred': pred.max().item(),
'min_pred': pred.min().item(),
}
return loss, log
def forward(self, x, cond, t):
return self.model(x, cond, t)
@MODEL_REGISTRY.register('pd')
class PlanDiffuser(nn.Module):
"""
Overview:
Diffuser model for plan.
Arguments:
- diffuser_model (:obj:`str`): type of plan model
- diffuser_model_cfg (:obj:'dict') config of diffuser_model
- value_model (:obj:`str`): type of value model, if haven't use, set it as None
- value_model_cfg (:obj:`int`): config of value_model
- sample_kwargs : config of sample function
"""
def __init__(
self, diffuser_model: str, diffuser_model_cfg: dict, value_model: str, value_model_cfg: dict, **sample_kwargs
):
super().__init__()
diffuser_model = eval(diffuser_model)
self.diffuser = diffuser_model(**diffuser_model_cfg)
self.value = None
if value_model:
value_model = eval(value_model)
self.value = value_model(**value_model_cfg)
self.sample_kwargs = sample_kwargs
def diffuser_loss(self, x_start, cond, t):
return self.diffuser.p_losses(x_start, cond, t)
def value_loss(self, x_start, cond, target, t):
return self.value.p_losses(x_start, cond, target, t)
def get_eval(self, cond, batch_size=1):
cond = self.repeat_cond(cond, batch_size)
if self.value:
samples = self.diffuser(
cond, sample_fn=n_step_guided_p_sample, plan_size=batch_size, guide=self.value, **self.sample_kwargs
)
# extract action [eval_num, batch_size, horizon, transition_dim]
actions = samples.trajectories[:, :, :, :self.diffuser.action_dim]
action = actions[:, 0, 0]
return action
else:
samples = self.diffuser(cond, plan_size=batch_size)
return samples.trajectories[:, :, :, self.diffuser.action_dim:].squeeze(1)
def repeat_cond(self, cond, batch_size):
for k, v in cond.items():
cond[k] = v.repeat_interleave(batch_size, dim=0)
return cond
@MODEL_REGISTRY.register('dd')
class GaussianInvDynDiffusion(nn.Module):
"""
Overview:
Gaussian diffusion model with Invdyn action model.
Arguments:
- model (:obj:`str`): type of model
- model_cfg (:obj:'dict') config of model
- horizon (:obj:`int`): horizon of trajectory
- obs_dim (:obj:`int`): Dim of the ovservation
- action_dim (:obj:`int`): Dim of the ation
- n_timesteps (:obj:`int`): Number of timesteps
- hidden_dim (:obj:'int'): hidden dim of inv_model
- returns_condition (:obj:'bool'): Whether use returns condition
- ar_inv (:obj:'bool'): Whether use inverse action learning
- train_only_inv (:obj:'bool'): Whether train inverse action model only
- predict_epsilon (:obj:'bool'): Whether predict epsilon
- condition_guidance_w (:obj:'float'): weight of condition guidance
- loss_discount (:obj:'float'): discount of loss
"""
def __init__(
self,
model: str,
model_cfg: dict,
horizon: int,
obs_dim: Union[int, SequenceType],
action_dim: Union[int, SequenceType],
n_timesteps: int = 1000,
hidden_dim: int = 256,
returns_condition: bool = False,
ar_inv: bool = False,
train_only_inv: bool = False,
predict_epsilon: bool = True,
condition_guidance_w: float = 0.1,
loss_discount: float = 1.0,
clip_denoised: bool = False,
) -> None:
super().__init__()
self.horizon = horizon
self.obs_dim = obs_dim
self.action_dim = action_dim
self.transition_dim = obs_dim + action_dim
if type(model) == str:
model = eval(model)
self.model = model(**model_cfg)
self.ar_inv = ar_inv
self.train_only_inv = train_only_inv
self.predict_epsilon = predict_epsilon
self.condition_guidance_w = condition_guidance_w
self.inv_model = nn.Sequential(
nn.Linear(2 * self.obs_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, self.action_dim),
)
self.returns_condition = returns_condition
self.clip_denoised = clip_denoised
betas = cosine_beta_schedule(n_timesteps)
alphas = 1. - betas
alphas_cumprod = torch.cumprod(alphas, axis=0)
alphas_cumprod_prev = torch.cat([torch.ones(1), alphas_cumprod[:-1]])
self.n_timesteps = int(n_timesteps)
self.register_buffer('betas', betas)
self.register_buffer('alphas_cumprod', alphas_cumprod)
self.register_buffer('alphas_cumprod_prev', alphas_cumprod_prev)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', torch.sqrt(alphas_cumprod))
self.register_buffer('sqrt_one_minus_alphas_cumprod', torch.sqrt(1. - alphas_cumprod))
self.register_buffer('log_one_minus_alphas_cumprod', torch.log(1. - alphas_cumprod))
self.register_buffer('sqrt_recip_alphas_cumprod', torch.sqrt(1. / alphas_cumprod))
self.register_buffer('sqrt_recipm1_alphas_cumprod', torch.sqrt(1. / alphas_cumprod - 1))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
self.register_buffer('posterior_variance', posterior_variance)
# log calculation clipped because the posterior variance
# is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', torch.log(torch.clamp(posterior_variance, min=1e-20)))
self.register_buffer('posterior_mean_coef1', betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))
self.register_buffer(
'posterior_mean_coef2', (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)
)
self.loss_weights = self.get_loss_weights(loss_discount)
def get_loss_weights(self, discount: int):
self.action_weight = 1
dim_weights = torch.ones(self.obs_dim, dtype=torch.float32)
# decay loss with trajectory timestep: discount**t
discounts = discount ** torch.arange(self.horizon, dtype=torch.float)
discounts = discounts / discounts.mean()
loss_weights = torch.einsum('h,t->ht', discounts, dim_weights)
# Cause things are conditioned on t=0
if self.predict_epsilon:
loss_weights[0, :] = 0
return loss_weights
def predict_start_from_noise(self, x_t, t, noise):
"""
if self.predict_epsilon, model output is (scaled) noise;
otherwise, model predicts x0 directly
"""
if self.predict_epsilon:
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
else:
return noise
def q_posterior(self, x_start, x_t, t):
"""
Arguments:
x_start (:obj:'tensor') noise trajectory in timestep 0
x_t (:obj:'tuple') noise trajectory in timestep t
t (:obj:'int') timestep of diffusion step
"""
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, cond, t, returns=None):
"""
Arguments:
x (:obj:'tensor') noise trajectory in timestep t
cond (:obj:'tuple') [ (time, state), ... ] state is init state of env, time = 0
t (:obj:'int') timestep of diffusion step
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
returns:
model_mean (:obj:'tensor.float')
posterior_variance (:obj:'float')
posterior_log_variance (:obj:'float')
"""
if self.returns_condition:
# epsilon could be epsilon or x0 itself
epsilon_cond = self.model(x, cond, t, returns, use_dropout=False)
epsilon_uncond = self.model(x, cond, t, returns, force_dropout=True)
epsilon = epsilon_uncond + self.condition_guidance_w * (epsilon_cond - epsilon_uncond)
else:
epsilon = self.model(x, cond, t)
t = t.detach().to(torch.int64)
x_recon = self.predict_start_from_noise(x, t=t, noise=epsilon)
if self.clip_denoised:
x_recon.clamp_(-1., 1.)
else:
assert RuntimeError()
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, cond, t, returns=None):
"""
Arguments:
x (:obj:'tensor') noise trajectory in timestep t
cond (:obj:'tuple') [ (time, state), ... ] state is init state of env, time = 0
t (:obj:'int') timestep of diffusion step
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
"""
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, cond=cond, t=t, returns=returns)
noise = 0.5 * torch.randn_like(x)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1, ) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_loop(self, shape, cond, returns=None, verbose=True, return_diffusion=False):
"""
Arguments:
shape (:obj:'tuple') (batch_size, horizon, self.obs_dim)
cond (:obj:'tuple') [ (time, state), ... ] state is init state of env, time = 0
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
horizon (:obj:'int') horizon of trajectory
verbose (:obj:'bool') whether log diffusion progress
return_diffusion (:obj:'bool') whether use return diffusion
"""
device = self.betas.device
batch_size = shape[0]
x = 0.5 * torch.randn(shape, device=device)
# In this model, init state must be given by the env and without noise.
x = apply_conditioning(x, cond, 0)
if return_diffusion:
diffusion = [x]
for i in reversed(range(0, self.n_timesteps)):
timesteps = torch.full((batch_size, ), i, device=device, dtype=torch.long)
x = self.p_sample(x, cond, timesteps, returns)
x = apply_conditioning(x, cond, 0)
if return_diffusion:
diffusion.append(x)
if return_diffusion:
return x, torch.stack(diffusion, dim=1)
else:
return x
@torch.no_grad()
def conditional_sample(self, cond, returns=None, horizon=None, *args, **kwargs):
"""
Arguments:
conditions (:obj:'tuple') [ (time, state), ... ] state is init state of env, time is timestep of trajectory
returns (:obj:'tensor') condition returns of trajectory, returns is normal return
horizon (:obj:'int') horizon of trajectory
returns:
x (:obj:'tensor') tarjctory of env
"""
device = self.betas.device
batch_size = len(cond[0])
horizon = horizon or self.horizon
shape = (batch_size, horizon, self.obs_dim)
return self.p_sample_loop(shape, cond, returns, *args, **kwargs)
def q_sample(self, x_start, t, noise=None):
"""
Arguments:
conditions (:obj:'tuple') [ (time, state), ... ] conditions of diffusion
t (:obj:'int') timestep of diffusion
noise (:obj:'tensor.float') timestep's noise of diffusion
"""
if noise is None:
noise = torch.randn_like(x_start)
sample = (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
return sample
def p_losses(self, x_start, cond, t, returns=None):
noise = torch.randn_like(x_start)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_noisy = apply_conditioning(x_noisy, cond, 0)
x_recon = self.model(x_noisy, cond, t, returns)
if not self.predict_epsilon:
x_recon = apply_conditioning(x_recon, cond, 0)
assert noise.shape == x_recon.shape
if self.predict_epsilon:
loss = F.mse_loss(x_recon, noise, reduction='none')
loss = (loss * self.loss_weights.to(loss.device)).mean()
else:
loss = F.mse_loss(x_recon, x_start, reduction='none')
loss = (loss * self.loss_weights.to(loss.device)).mean()
return loss
def forward(self, cond, *args, **kwargs):
return self.conditional_sample(cond=cond, *args, **kwargs)
|