File size: 22,764 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from typing import Union, Dict, Optional
import torch
import torch.nn as nn

from ding.torch_utils import get_lstm
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ding.model.template.q_learning import parallel_wrapper
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, \
    FCEncoder, ConvEncoder


class RNNLayer(nn.Module):

    def __init__(self, lstm_type, input_size, hidden_size, res_link: bool = False):
        super(RNNLayer, self).__init__()
        self.rnn = get_lstm(lstm_type, input_size=input_size, hidden_size=hidden_size)
        self.res_link = res_link

    def forward(self, x, prev_state, inference: bool = False):
        """
        Forward pass of the RNN layer.
        If inference is True, sequence length of input is set to 1.
        If res_link is True, a residual link is added to the output.
        """
        # x: obs_embedding
        if self.res_link:
            a = x
        if inference:
            x = x.unsqueeze(0)  # for rnn input, put the seq_len of x as 1 instead of none.
            # prev_state: DataType: List[Tuple[torch.Tensor]]; Initially, it is a list of None
            x, next_state = self.rnn(x, prev_state)
            x = x.squeeze(0)  # to delete the seq_len dim to match head network input
            if self.res_link:
                x = x + a
            return {'output': x, 'next_state': next_state}
        else:
            # lstm_embedding stores all hidden_state
            lstm_embedding = []
            hidden_state_list = []
            for t in range(x.shape[0]):  # T timesteps
                # use x[t:t+1] but not x[t] can keep original dimension
                output, prev_state = self.rnn(x[t:t + 1], prev_state)  # output: (1,B, head_hidden_size)
                lstm_embedding.append(output)
                hidden_state = [p['h'] for p in prev_state]
                # only keep ht, {list: x.shape[0]{Tensor:(1, batch_size, head_hidden_size)}}
                hidden_state_list.append(torch.cat(hidden_state, dim=1))
            x = torch.cat(lstm_embedding, 0)  # (T, B, head_hidden_size)
            if self.res_link:
                x = x + a
            all_hidden_state = torch.cat(hidden_state_list, dim=0)
            return {'output': x, 'next_state': prev_state, 'hidden_state': all_hidden_state}


@MODEL_REGISTRY.register('havac')
class HAVAC(nn.Module):
    """
    Overview:
        The HAVAC model of each agent for HAPPO.
    Interfaces:
        ``__init__``, ``forward``
    """
    mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']

    def __init__(
        self,
        agent_obs_shape: Union[int, SequenceType],
        global_obs_shape: Union[int, SequenceType],
        action_shape: Union[int, SequenceType],
        agent_num: int,
        use_lstm: bool = False,
        lstm_type: str = 'gru',
        encoder_hidden_size_list: SequenceType = [128, 128, 64],
        actor_head_hidden_size: int = 64,
        actor_head_layer_num: int = 2,
        critic_head_hidden_size: int = 64,
        critic_head_layer_num: int = 1,
        action_space: str = 'discrete',
        activation: Optional[nn.Module] = nn.ReLU(),
        norm_type: Optional[str] = None,
        sigma_type: Optional[str] = 'independent',
        bound_type: Optional[str] = None,
        res_link: bool = False,
    ) -> None:
        r"""
        Overview:
            Init the VAC Model for HAPPO according to arguments.
        Arguments:
            - agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent.
            - global_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for global agent
            - action_shape (:obj:`Union[int, SequenceType]`): Action's space.
            - agent_num (:obj:`int`): Number of agents.
            - lstm_type (:obj:`str`): use lstm or gru, default to gru
            - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
            - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
            - actor_head_layer_num (:obj:`int`):
                The num of layers used in the network to compute Q value output for actor's nn.
            - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
            - critic_head_layer_num (:obj:`int`):
                The num of layers used in the network to compute Q value output for critic's nn.
            - activation (:obj:`Optional[nn.Module]`):
                The type of activation function to use in ``MLP`` the after ``layer_fn``,
                if ``None`` then default set to ``nn.ReLU()``
            - norm_type (:obj:`Optional[str]`):
                The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details`
            - res_link (:obj:`bool`): use the residual link or not, default to False
        """
        super(HAVAC, self).__init__()
        self.agent_num = agent_num
        self.agent_models = nn.ModuleList(
            [
                HAVACAgent(
                    agent_obs_shape=agent_obs_shape,
                    global_obs_shape=global_obs_shape,
                    action_shape=action_shape,
                    use_lstm=use_lstm,
                    action_space=action_space,
                ) for _ in range(agent_num)
            ]
        )

    def forward(self, agent_idx, input_data, mode):
        selected_agent_model = self.agent_models[agent_idx]
        output = selected_agent_model(input_data, mode)
        return output


class HAVACAgent(nn.Module):
    """
    Overview:
        The HAVAC model of each agent for HAPPO.
    Interfaces:
        ``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic``
    """
    mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']

    def __init__(
        self,
        agent_obs_shape: Union[int, SequenceType],
        global_obs_shape: Union[int, SequenceType],
        action_shape: Union[int, SequenceType],
        use_lstm: bool = False,
        lstm_type: str = 'gru',
        encoder_hidden_size_list: SequenceType = [128, 128, 64],
        actor_head_hidden_size: int = 64,
        actor_head_layer_num: int = 2,
        critic_head_hidden_size: int = 64,
        critic_head_layer_num: int = 1,
        action_space: str = 'discrete',
        activation: Optional[nn.Module] = nn.ReLU(),
        norm_type: Optional[str] = None,
        sigma_type: Optional[str] = 'happo',
        bound_type: Optional[str] = None,
        res_link: bool = False,
    ) -> None:
        r"""
        Overview:
            Init the VAC Model for HAPPO according to arguments.
        Arguments:
            - agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent.
            - global_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for global agent
            - action_shape (:obj:`Union[int, SequenceType]`): Action's space.
            - lstm_type (:obj:`str`): use lstm or gru, default to gru
            - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
            - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
            - actor_head_layer_num (:obj:`int`):
                The num of layers used in the network to compute Q value output for actor's nn.
            - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
            - critic_head_layer_num (:obj:`int`):
                The num of layers used in the network to compute Q value output for critic's nn.
            - activation (:obj:`Optional[nn.Module]`):
                The type of activation function to use in ``MLP`` the after ``layer_fn``,
                if ``None`` then default set to ``nn.ReLU()``
            - norm_type (:obj:`Optional[str]`):
                The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details`
            - res_link (:obj:`bool`): use the residual link or not, default to False
        """
        super(HAVACAgent, self).__init__()
        agent_obs_shape: int = squeeze(agent_obs_shape)
        global_obs_shape: int = squeeze(global_obs_shape)
        action_shape: int = squeeze(action_shape)
        self.global_obs_shape, self.agent_obs_shape, self.action_shape = global_obs_shape, agent_obs_shape, action_shape
        self.action_space = action_space
        # Encoder Type
        if isinstance(agent_obs_shape, int) or len(agent_obs_shape) == 1:
            actor_encoder_cls = FCEncoder
        elif len(agent_obs_shape) == 3:
            actor_encoder_cls = ConvEncoder
        else:
            raise RuntimeError(
                "not support obs_shape for pre-defined encoder: {}, please customize your own VAC".
                format(agent_obs_shape)
            )
        if isinstance(global_obs_shape, int) or len(global_obs_shape) == 1:
            critic_encoder_cls = FCEncoder
        elif len(global_obs_shape) == 3:
            critic_encoder_cls = ConvEncoder
        else:
            raise RuntimeError(
                "not support obs_shape for pre-defined encoder: {}, please customize your own VAC".
                format(global_obs_shape)
            )

        # We directly connect the Head after a Liner layer instead of using the 3-layer FCEncoder.
        # In SMAC task it can obviously improve the performance.
        # Users can change the model according to their own needs.
        self.actor_encoder = actor_encoder_cls(
            obs_shape=agent_obs_shape,
            hidden_size_list=encoder_hidden_size_list,
            activation=activation,
            norm_type=norm_type
        )
        self.critic_encoder = critic_encoder_cls(
            obs_shape=global_obs_shape,
            hidden_size_list=encoder_hidden_size_list,
            activation=activation,
            norm_type=norm_type
        )
        # RNN part
        self.use_lstm = use_lstm
        if self.use_lstm:
            self.actor_rnn = RNNLayer(
                lstm_type,
                input_size=encoder_hidden_size_list[-1],
                hidden_size=actor_head_hidden_size,
                res_link=res_link
            )
            self.critic_rnn = RNNLayer(
                lstm_type,
                input_size=encoder_hidden_size_list[-1],
                hidden_size=critic_head_hidden_size,
                res_link=res_link
            )
        # Head Type
        self.critic_head = RegressionHead(
            critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type
        )
        assert self.action_space in ['discrete', 'continuous'], self.action_space
        if self.action_space == 'discrete':
            self.actor_head = DiscreteHead(
                actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type
            )
        elif self.action_space == 'continuous':
            self.actor_head = ReparameterizationHead(
                actor_head_hidden_size,
                action_shape,
                actor_head_layer_num,
                sigma_type=sigma_type,
                activation=activation,
                norm_type=norm_type,
                bound_type=bound_type
            )
        # must use list, not nn.ModuleList
        self.actor = [self.actor_encoder, self.actor_rnn, self.actor_head] if self.use_lstm \
            else [self.actor_encoder, self.actor_head]
        self.critic = [self.critic_encoder, self.critic_rnn, self.critic_head] if self.use_lstm \
            else [self.critic_encoder, self.critic_head]
        # for convenience of call some apis(such as: self.critic.parameters()), but may cause
        # misunderstanding when print(self)
        self.actor = nn.ModuleList(self.actor)
        self.critic = nn.ModuleList(self.critic)

    def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
        r"""
        Overview:
            Use encoded embedding tensor to predict output.
            Parameter updates with VAC's MLPs forward setup.
        Arguments:
            Forward with ``'compute_actor'`` or ``'compute_critic'``:
                - inputs (:obj:`torch.Tensor`):
                    The encoded embedding tensor, determined with given ``hidden_size``, i.e. ``(B, N=hidden_size)``.
                    Whether ``actor_head_hidden_size`` or ``critic_head_hidden_size`` depend on ``mode``.
        Returns:
            - outputs (:obj:`Dict`):
                Run with encoder and head.

                Forward with ``'compute_actor'``, Necessary Keys:
                    - logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``.

                Forward with ``'compute_critic'``, Necessary Keys:
                    - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size.
        Shapes:
            - inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N corresponding ``hidden_size``
            - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
            - value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size.

        Actor Examples:
            >>> model = VAC(64,128)
            >>> inputs = torch.randn(4, 64)
            >>> actor_outputs = model(inputs,'compute_actor')
            >>> assert actor_outputs['logit'].shape == torch.Size([4, 128])

        Critic Examples:
            >>> model = VAC(64,64)
            >>> inputs = torch.randn(4, 64)
            >>> critic_outputs = model(inputs,'compute_critic')
            >>> critic_outputs['value']
            tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>)

        Actor-Critic Examples:
            >>> model = VAC(64,64)
            >>> inputs = torch.randn(4, 64)
            >>> outputs = model(inputs,'compute_actor_critic')
            >>> outputs['value']
            tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>)
            >>> assert outputs['logit'].shape == torch.Size([4, 64])

        """
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs)

    def compute_actor(self, inputs: Dict, inference: bool = False) -> Dict:
        r"""
        Overview:
            Execute parameter updates with ``'compute_actor'`` mode
            Use encoded embedding tensor to predict output.
        Arguments:
            - inputs (:obj:`torch.Tensor`):
                input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']),
                  'actor_prev_state']
        Returns:
            - outputs (:obj:`Dict`):
                Run with encoder RNN(optional) and head.

        ReturnsKeys:
            - logit (:obj:`torch.Tensor`): Logit encoding tensor.
            - actor_next_state:
            - hidden_state
        Shapes:
            - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
            - actor_next_state: (B,)
            - hidden_state:

        Examples:
            >>> model = HAVAC(
                    agent_obs_shape=obs_dim,
                    global_obs_shape=global_obs_dim,
                    action_shape=action_dim,
                    use_lstm = True,
                    )
            >>> inputs = {
                    'obs': {
                        'agent_state': torch.randn(T, bs, obs_dim),
                        'global_state': torch.randn(T, bs, global_obs_dim),
                        'action_mask': torch.randint(0, 2, size=(T, bs, action_dim))
                    },
                    'actor_prev_state': [None for _ in range(bs)],
                }
            >>> actor_outputs = model(inputs,'compute_actor')
            >>> assert actor_outputs['logit'].shape == (T, bs, action_dim)
        """
        x = inputs['obs']['agent_state']
        output = {}
        if self.use_lstm:
            rnn_actor_prev_state = inputs['actor_prev_state']
            if inference:
                x = self.actor_encoder(x)
                rnn_output = self.actor_rnn(x, rnn_actor_prev_state, inference)
                x = rnn_output['output']
                x = self.actor_head(x)
                output['next_state'] = rnn_output['next_state']
                # output: 'logit'/'next_state'
            else:
                assert len(x.shape) in [3, 5], x.shape
                x = parallel_wrapper(self.actor_encoder)(x)  # (T, B, N)
                rnn_output = self.actor_rnn(x, rnn_actor_prev_state, inference)
                x = rnn_output['output']
                x = parallel_wrapper(self.actor_head)(x)
                output['actor_next_state'] = rnn_output['next_state']
                output['actor_hidden_state'] = rnn_output['hidden_state']
                # output: 'logit'/'actor_next_state'/'hidden_state'
        else:
            x = self.actor_encoder(x)
            x = self.actor_head(x)
            # output: 'logit'

        if self.action_space == 'discrete':
            action_mask = inputs['obs']['action_mask']
            logit = x['logit']
            logit[action_mask == 0.0] = -99999999
        elif self.action_space == 'continuous':
            logit = x
        output['logit'] = logit
        return output

    def compute_critic(self, inputs: Dict, inference: bool = False) -> Dict:
        r"""
        Overview:
            Execute parameter updates with ``'compute_critic'`` mode
            Use encoded embedding tensor to predict output.
        Arguments:
            - inputs (:obj:`Dict`):
                input data dict with keys ['obs'(with keys ['agent_state', 'global_state', 'action_mask']),
                  'critic_prev_state'(when you are using rnn)]
        Returns:
            - outputs (:obj:`Dict`):
                Run with encoder [rnn] and head.

                Necessary Keys:
                    - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size.
                    - logits
        Shapes:
            - value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size.
            - logits

        Examples:
            >>> model = HAVAC(
                    agent_obs_shape=obs_dim,
                    global_obs_shape=global_obs_dim,
                    action_shape=action_dim,
                    use_lstm = True,
                    )
            >>> inputs = {
                    'obs': {
                        'agent_state': torch.randn(T, bs, obs_dim),
                        'global_state': torch.randn(T, bs, global_obs_dim),
                        'action_mask': torch.randint(0, 2, size=(T, bs, action_dim))
                    },
                    'critic_prev_state': [None for _ in range(bs)],
                }
            >>> critic_outputs = model(inputs,'compute_critic')
            >>> assert critic_outputs['value'].shape == (T, bs))
        """
        global_obs = inputs['obs']['global_state']
        output = {}
        if self.use_lstm:
            rnn_critic_prev_state = inputs['critic_prev_state']
            if inference:
                x = self.critic_encoder(global_obs)
                rnn_output = self.critic_rnn(x, rnn_critic_prev_state, inference)
                x = rnn_output['output']
                x = self.critic_head(x)
                output['next_state'] = rnn_output['next_state']
                # output: 'value'/'next_state'
            else:
                assert len(global_obs.shape) in [3, 5], global_obs.shape
                x = parallel_wrapper(self.critic_encoder)(global_obs)  # (T, B, N)
                rnn_output = self.critic_rnn(x, rnn_critic_prev_state, inference)
                x = rnn_output['output']
                x = parallel_wrapper(self.critic_head)(x)
                output['critic_next_state'] = rnn_output['next_state']
                output['critic_hidden_state'] = rnn_output['hidden_state']
                # output: 'value'/'critic_next_state'/'hidden_state'
        else:
            x = self.critic_encoder(global_obs)
            x = self.critic_head(x)
            # output: 'value'
        output['value'] = x['pred']
        return output

    def compute_actor_critic(self, inputs: Dict, inference: bool = False) -> Dict:
        r"""
        Overview:
            Execute parameter updates with ``'compute_actor_critic'`` mode
            Use encoded embedding tensor to predict output.
        Arguments:
            - inputs (:dict): input data dict with keys
                ['obs'(with keys ['agent_state', 'global_state', 'action_mask']),
                'actor_prev_state', 'critic_prev_state'(when you are using rnn)]

        Returns:
            - outputs (:obj:`Dict`):
                Run with encoder and head.

        ReturnsKeys:
            - logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``.
            - value (:obj:`torch.Tensor`): Q value tensor with same size as batch size.
        Shapes:
            - logit (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
            - value (:obj:`torch.FloatTensor`): :math:`(B, )`, where B is batch size.

        Examples:
            >>> model = VAC(64,64)
            >>> inputs = torch.randn(4, 64)
            >>> outputs = model(inputs,'compute_actor_critic')
            >>> outputs['value']
            tensor([0.0252, 0.0235, 0.0201, 0.0072], grad_fn=<SqueezeBackward1>)
            >>> assert outputs['logit'].shape == torch.Size([4, 64])


        .. note::
            ``compute_actor_critic`` interface aims to save computation when shares encoder.
            Returning the combination dictionry.

        """
        actor_output = self.compute_actor(inputs, inference)
        critic_output = self.compute_critic(inputs, inference)
        if self.use_lstm:
            return {
                'logit': actor_output['logit'],
                'value': critic_output['value'],
                'actor_next_state': actor_output['actor_next_state'],
                'actor_hidden_state': actor_output['actor_hidden_state'],
                'critic_next_state': critic_output['critic_next_state'],
                'critic_hidden_state': critic_output['critic_hidden_state'],
            }
        else:
            return {
                'logit': actor_output['logit'],
                'value': critic_output['value'],
            }