File size: 25,010 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
from typing import Union, Dict, Optional
from easydict import EasyDict
import torch
import torch.nn as nn

from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import RegressionHead, ReparameterizationHead, DiscreteHead, MultiHead, \
    FCEncoder, ConvEncoder


@MODEL_REGISTRY.register('discrete_maqac')
class DiscreteMAQAC(nn.Module):
    """
    Overview:
        The neural network and computation graph of algorithms related to discrete action Multi-Agent Q-value \
        Actor-CritiC (MAQAC) model. The model is composed of actor and critic, where actor is a MLP network and \
        critic is a MLP network. The actor network is used to predict the action probability distribution, and the \
        critic network is used to predict the Q value of the state-action pair.
    Interfaces:
        ``__init__``, ``forward``, ``compute_actor``, ``compute_critic``
    """
    mode = ['compute_actor', 'compute_critic']

    def __init__(
            self,
            agent_obs_shape: Union[int, SequenceType],
            global_obs_shape: Union[int, SequenceType],
            action_shape: Union[int, SequenceType],
            twin_critic: bool = False,
            actor_head_hidden_size: int = 64,
            actor_head_layer_num: int = 1,
            critic_head_hidden_size: int = 64,
            critic_head_layer_num: int = 1,
            activation: Optional[nn.Module] = nn.ReLU(),
            norm_type: Optional[str] = None,
    ) -> None:
        """
        Overview:
            Initialize the DiscreteMAQAC Model according to arguments.
        Arguments:
            - agent_obs_shape (:obj:`Union[int, SequenceType]`): Agent's observation's space.
            - global_obs_shape (:obj:`Union[int, SequenceType]`): Global observation's space.
            - obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
            - action_shape (:obj:`Union[int, SequenceType]`): Action's space.
            - twin_critic (:obj:`bool`): Whether include twin critic.
            - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
            - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
                for actor's nn.
            - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
            - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
                for critic's nn.
            - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
                ``layer_fn``, if ``None`` then default set to ``nn.ReLU()``
            - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \
                for more details.
        """
        super(DiscreteMAQAC, self).__init__()
        agent_obs_shape: int = squeeze(agent_obs_shape)
        action_shape: int = squeeze(action_shape)
        self.actor = nn.Sequential(
            nn.Linear(agent_obs_shape, actor_head_hidden_size), activation,
            DiscreteHead(
                actor_head_hidden_size, action_shape, actor_head_layer_num, activation=activation, norm_type=norm_type
            )
        )

        self.twin_critic = twin_critic
        if self.twin_critic:
            self.critic = nn.ModuleList()
            for _ in range(2):
                self.critic.append(
                    nn.Sequential(
                        nn.Linear(global_obs_shape, critic_head_hidden_size), activation,
                        DiscreteHead(
                            critic_head_hidden_size,
                            action_shape,
                            critic_head_layer_num,
                            activation=activation,
                            norm_type=norm_type
                        )
                    )
                )
        else:
            self.critic = nn.Sequential(
                nn.Linear(global_obs_shape, critic_head_hidden_size), activation,
                DiscreteHead(
                    critic_head_hidden_size,
                    action_shape,
                    critic_head_layer_num,
                    activation=activation,
                    norm_type=norm_type
                )
            )

    def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
        """
        Overview:
            Use observation tensor to predict output, with ``compute_actor`` or ``compute_critic`` mode.
        Arguments:
            - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                    - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
                        with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
                        N0 corresponds to ``agent_obs_shape``.
                    - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
                        with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
                        N1 corresponds to ``global_obs_shape``.
                    - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
                        with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
                        N2 corresponds to ``action_shape``.

            - mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class.
        Returns:
            - output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \
                whose key-values vary in different forward modes.
        Examples:
            >>> B = 32
            >>> agent_obs_shape = 216
            >>> global_obs_shape = 264
            >>> agent_num = 8
            >>> action_shape = 14
            >>> data = {
            >>>     'obs': {
            >>>         'agent_state': torch.randn(B, agent_num, agent_obs_shape),
            >>>         'global_state': torch.randn(B, agent_num, global_obs_shape),
            >>>         'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
            >>>     }
            >>> }
            >>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True)
            >>> logit = model(data, mode='compute_actor')['logit']
            >>> value = model(data, mode='compute_critic')['q_value']
        """
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs)

    def compute_actor(self, inputs: Dict) -> Dict:
        """
        Overview:
            Use observation tensor to predict action logits.
        Arguments:
            - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                    - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
                        with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
                        N0 corresponds to ``agent_obs_shape``.
                    - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
                        with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
                        N1 corresponds to ``global_obs_shape``.
                    - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
                        with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
                        N2 corresponds to ``action_shape``.
        Returns:
            - output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \
                whose key-values vary in different forward modes.
                - logit (:obj:`torch.Tensor`): Action's output logit (real value range), whose shape is \
                    :math:`(B, A, N2)`, where N2 corresponds to ``action_shape``.
                - action_mask (:obj:`torch.Tensor`): Action mask tensor with same size as ``action_shape``.
        Examples:
            >>> B = 32
            >>> agent_obs_shape = 216
            >>> global_obs_shape = 264
            >>> agent_num = 8
            >>> action_shape = 14
            >>> data = {
            >>>     'obs': {
            >>>         'agent_state': torch.randn(B, agent_num, agent_obs_shape),
            >>>         'global_state': torch.randn(B, agent_num, global_obs_shape),
            >>>         'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
            >>>     }
            >>> }
            >>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True)
            >>> logit = model.compute_actor(data)['logit']
        """
        action_mask = inputs['obs']['action_mask']
        x = self.actor(inputs['obs']['agent_state'])
        return {'logit': x['logit'], 'action_mask': action_mask}

    def compute_critic(self, inputs: Dict) -> Dict:
        """
        Overview:
            use observation tensor to predict Q value.
        Arguments:
            - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                    - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
                        with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
                        N0 corresponds to ``agent_obs_shape``.
                    - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
                        with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
                        N1 corresponds to ``global_obs_shape``.
                    - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
                        with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
                        N2 corresponds to ``action_shape``.
        Returns:
            - output (:obj:`Dict[str, torch.Tensor]`): The output dict of DiscreteMAQAC forward computation graph, \
                whose key-values vary in different values of ``twin_critic``.
                - q_value (:obj:`list`): If ``twin_critic=True``, q_value should be 2 elements, each is the shape of \
                    :math:`(B, A, N2)`, where B is batch size and A is agent num. N2 corresponds to ``action_shape``. \
                    Otherwise, q_value should be ``torch.Tensor``.
        Examples:
            >>> B = 32
            >>> agent_obs_shape = 216
            >>> global_obs_shape = 264
            >>> agent_num = 8
            >>> action_shape = 14
            >>> data = {
            >>>     'obs': {
            >>>         'agent_state': torch.randn(B, agent_num, agent_obs_shape),
            >>>         'global_state': torch.randn(B, agent_num, global_obs_shape),
            >>>         'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
            >>>     }
            >>> }
            >>> model = DiscreteMAQAC(agent_obs_shape, global_obs_shape, action_shape, twin_critic=True)
            >>> value = model.compute_critic(data)['q_value']
        """

        if self.twin_critic:
            x = [m(inputs['obs']['global_state'])['logit'] for m in self.critic]
        else:
            x = self.critic(inputs['obs']['global_state'])['logit']
        return {'q_value': x}


@MODEL_REGISTRY.register('continuous_maqac')
class ContinuousMAQAC(nn.Module):
    """
    Overview:
        The neural network and computation graph of algorithms related to continuous action Multi-Agent Q-value \
        Actor-CritiC (MAQAC) model. The model is composed of actor and critic, where actor is a MLP network and \
        critic is a MLP network. The actor network is used to predict the action probability distribution, and the \
        critic network is used to predict the Q value of the state-action pair.
    Interfaces:
        ``__init__``, ``forward``, ``compute_actor``, ``compute_critic``
    """
    mode = ['compute_actor', 'compute_critic']

    def __init__(
            self,
            agent_obs_shape: Union[int, SequenceType],
            global_obs_shape: Union[int, SequenceType],
            action_shape: Union[int, SequenceType, EasyDict],
            action_space: str,
            twin_critic: bool = False,
            actor_head_hidden_size: int = 64,
            actor_head_layer_num: int = 1,
            critic_head_hidden_size: int = 64,
            critic_head_layer_num: int = 1,
            activation: Optional[nn.Module] = nn.ReLU(),
            norm_type: Optional[str] = None,
    ) -> None:
        """
        Overview:
            Initialize the QAC Model according to arguments.
        Arguments:
            - obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
            - action_shape (:obj:`Union[int, SequenceType, EasyDict]`): Action's space, such as 4, (3, )
            - action_space (:obj:`str`): Whether choose ``regression`` or ``reparameterization``.
            - twin_critic (:obj:`bool`): Whether include twin critic.
            - actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to actor-nn's ``Head``.
            - actor_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
                for actor's nn.
            - critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to critic-nn's ``Head``.
            - critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output \
                for critic's nn.
            - activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
                ``layer_fn``, if ``None`` then default set to ``nn.ReLU()``
            - norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \
                for more details.
        """
        super(ContinuousMAQAC, self).__init__()
        obs_shape: int = squeeze(agent_obs_shape)
        global_obs_shape: int = squeeze(global_obs_shape)
        action_shape = squeeze(action_shape)
        self.action_shape = action_shape
        self.action_space = action_space
        assert self.action_space in ['regression', 'reparameterization'], self.action_space
        if self.action_space == 'regression':  # DDPG, TD3
            self.actor = nn.Sequential(
                nn.Linear(obs_shape, actor_head_hidden_size), activation,
                RegressionHead(
                    actor_head_hidden_size,
                    action_shape,
                    actor_head_layer_num,
                    final_tanh=True,
                    activation=activation,
                    norm_type=norm_type
                )
            )
        else:  # SAC
            self.actor = nn.Sequential(
                nn.Linear(obs_shape, actor_head_hidden_size), activation,
                ReparameterizationHead(
                    actor_head_hidden_size,
                    action_shape,
                    actor_head_layer_num,
                    sigma_type='conditioned',
                    activation=activation,
                    norm_type=norm_type
                )
            )
        self.twin_critic = twin_critic
        critic_input_size = global_obs_shape + action_shape
        if self.twin_critic:
            self.critic = nn.ModuleList()
            for _ in range(2):
                self.critic.append(
                    nn.Sequential(
                        nn.Linear(critic_input_size, critic_head_hidden_size), activation,
                        RegressionHead(
                            critic_head_hidden_size,
                            1,
                            critic_head_layer_num,
                            final_tanh=False,
                            activation=activation,
                            norm_type=norm_type
                        )
                    )
                )
        else:
            self.critic = nn.Sequential(
                nn.Linear(critic_input_size, critic_head_hidden_size), activation,
                RegressionHead(
                    critic_head_hidden_size,
                    1,
                    critic_head_layer_num,
                    final_tanh=False,
                    activation=activation,
                    norm_type=norm_type
                )
            )

    def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
        """
        Overview:
            Use observation and action tensor to predict output in ``compute_actor`` or ``compute_critic`` mode.
        Arguments:
            - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                    - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
                        with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
                        N0 corresponds to ``agent_obs_shape``.
                    - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
                        with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
                        N1 corresponds to ``global_obs_shape``.
                    - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
                        with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
                        N2 corresponds to ``action_shape``.

                - ``action`` (:obj:`torch.Tensor`): The action tensor data, \
                    with shape :math:`(B, A, N3)`, where B is batch size and A is agent num. \
                    N3 corresponds to ``action_shape``.
            - mode (:obj:`str`): Name of the forward mode.
        Returns:
            - outputs (:obj:`Dict`): Outputs of network forward, whose key-values will be different for different \
                ``mode``, ``twin_critic``, ``action_space``.
        Examples:
            >>> B = 32
            >>> agent_obs_shape = 216
            >>> global_obs_shape = 264
            >>> agent_num = 8
            >>> action_shape = 14
            >>> act_space = 'reparameterization'  # regression
            >>> data = {
            >>>     'obs': {
            >>>         'agent_state': torch.randn(B, agent_num, agent_obs_shape),
            >>>         'global_state': torch.randn(B, agent_num, global_obs_shape),
            >>>         'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
            >>>     },
            >>>     'action': torch.randn(B, agent_num, squeeze(action_shape))
            >>> }
            >>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False)
            >>> if action_space == 'regression':
            >>>     action = model(data['obs'], mode='compute_actor')['action']
            >>> elif action_space == 'reparameterization':
            >>>     (mu, sigma) = model(data['obs'], mode='compute_actor')['logit']
            >>> value = model(data, mode='compute_critic')['q_value']
        """
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs)

    def compute_actor(self, inputs: Dict) -> Dict:
        """
        Overview:
            Use observation tensor to predict action logits.
        Arguments:
            - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
                    with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
                    N0 corresponds to ``agent_obs_shape``.

        Returns:
            - outputs (:obj:`Dict`): Outputs of network forward.
        ReturnKeys (``action_space == 'regression'``):
            - action (:obj:`torch.Tensor`): Action tensor with same size as ``action_shape``.
        ReturnKeys (``action_space == 'reparameterization'``):
            - logit (:obj:`list`): 2 elements, each is the shape of :math:`(B, A, N3)`, where B is batch size and \
                A is agent num. N3 corresponds to ``action_shape``.
        Examples:
            >>> B = 32
            >>> agent_obs_shape = 216
            >>> global_obs_shape = 264
            >>> agent_num = 8
            >>> action_shape = 14
            >>> act_space = 'reparameterization'  # 'regression'
            >>> data = {
            >>>     'agent_state': torch.randn(B, agent_num, agent_obs_shape),
            >>> }
            >>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False)
            >>> if action_space == 'regression':
            >>>     action = model.compute_actor(data)['action']
            >>> elif action_space == 'reparameterization':
            >>>     (mu, sigma) = model.compute_actor(data)['logit']
        """
        inputs = inputs['agent_state']
        if self.action_space == 'regression':
            x = self.actor(inputs)
            return {'action': x['pred']}
        else:
            x = self.actor(inputs)
            return {'logit': [x['mu'], x['sigma']]}

    def compute_critic(self, inputs: Dict) -> Dict:
        """
        Overview:
            Use observation tensor and action tensor to predict Q value.
        Arguments:
            - inputs (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                - ``obs`` (:obj:`Dict[str, torch.Tensor]`): The input dict tensor data, has keys:
                    - ``agent_state`` (:obj:`torch.Tensor`): The agent's observation tensor data, \
                        with shape :math:`(B, A, N0)`, where B is batch size and A is agent num. \
                        N0 corresponds to ``agent_obs_shape``.
                    - ``global_state`` (:obj:`torch.Tensor`): The global observation tensor data, \
                        with shape :math:`(B, A, N1)`, where B is batch size and A is agent num. \
                        N1 corresponds to ``global_obs_shape``.
                    - ``action_mask`` (:obj:`torch.Tensor`): The action mask tensor data, \
                        with shape :math:`(B, A, N2)`, where B is batch size and A is agent num. \
                        N2 corresponds to ``action_shape``.

                - ``action`` (:obj:`torch.Tensor`): The action tensor data, \
                    with shape :math:`(B, A, N3)`, where B is batch size and A is agent num. \
                    N3 corresponds to ``action_shape``.

        Returns:
            - outputs (:obj:`Dict`): Outputs of network forward.
        ReturnKeys (``twin_critic=True``):
            - q_value (:obj:`list`): 2 elements, each is the shape of :math:`(B, A)`, where B is batch size and \
                A is agent num.
        ReturnKeys (``twin_critic=False``):
            - q_value (:obj:`torch.Tensor`): :math:`(B, A)`, where B is batch size and A is agent num.
        Examples:
            >>> B = 32
            >>> agent_obs_shape = 216
            >>> global_obs_shape = 264
            >>> agent_num = 8
            >>> action_shape = 14
            >>> act_space = 'reparameterization'  # 'regression'
            >>> data = {
            >>>     'obs': {
            >>>         'agent_state': torch.randn(B, agent_num, agent_obs_shape),
            >>>         'global_state': torch.randn(B, agent_num, global_obs_shape),
            >>>         'action_mask': torch.randint(0, 2, size=(B, agent_num, action_shape))
            >>>     },
            >>>     'action': torch.randn(B, agent_num, squeeze(action_shape))
            >>> }
            >>> model = ContinuousMAQAC(agent_obs_shape, global_obs_shape, action_shape, act_space, twin_critic=False)
            >>> value = model.compute_critic(data)['q_value']
        """

        obs, action = inputs['obs']['global_state'], inputs['action']
        if len(action.shape) == 1:  # (B, ) -> (B, 1)
            action = action.unsqueeze(1)
        x = torch.cat([obs, action], dim=-1)
        if self.twin_critic:
            x = [m(x)['pred'] for m in self.critic]
        else:
            x = self.critic(x)['pred']
        return {'q_value': x}