File size: 14,539 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
from typing import Union, Dict, Optional
import torch
import torch.nn as nn
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead
@MODEL_REGISTRY.register('mavac')
class MAVAC(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to (state) Value Actor-Critic (VAC) for \
multi-agent, such as MAPPO(https://arxiv.org/abs/2103.01955). This model now supports discrete and \
continuous action space. The MAVAC is composed of four parts: ``actor_encoder``, ``critic_encoder``, \
``actor_head`` and ``critic_head``. Encoders are used to extract the feature from various observation. \
Heads are used to predict corresponding value or action logit.
Interfaces:
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic``.
"""
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
def __init__(
self,
agent_obs_shape: Union[int, SequenceType],
global_obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
agent_num: int,
actor_head_hidden_size: int = 256,
actor_head_layer_num: int = 2,
critic_head_hidden_size: int = 512,
critic_head_layer_num: int = 1,
action_space: str = 'discrete',
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
sigma_type: Optional[str] = 'independent',
bound_type: Optional[str] = None,
) -> None:
"""
Overview:
Init the MAVAC Model according to arguments.
Arguments:
- agent_obs_shape (:obj:`Union[int, SequenceType]`): Observation's space for single agent, \
such as 8 or [4, 84, 84].
- global_obs_shape (:obj:`Union[int, SequenceType]`): Global observation's space, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape for single agent, such as 6 \
or [2, 3, 3].
- agent_num (:obj:`int`): This parameter is temporarily reserved. This parameter may be required for \
subsequent changes to the model
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``actor_head`` network, defaults \
to 256, it must match the last element of ``agent_obs_shape``.
- actor_head_layer_num (:obj:`int`): The num of layers used in the ``actor_head`` network to compute action.
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``critic_head`` network, defaults \
to 512, it must match the last element of ``global_obs_shape``.
- critic_head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output for \
critic's nn.
- action_space (:obj:`Union[int, SequenceType]`): The type of different action spaces, including \
['discrete', 'continuous'], then will instantiate corresponding head, including ``DiscreteHead`` \
and ``ReparameterizationHead``.
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN'].
- sigma_type (:obj:`Optional[str]`): The type of sigma in continuous action space, see \
``ding.torch_utils.network.dreamer.ReparameterizationHead`` for more details, in MAPPO, it defaults \
to ``independent``, which means state-independent sigma parameters.
- bound_type (:obj:`Optional[str]`): The type of action bound methods in continuous action space, defaults \
to ``None``, which means no bound.
"""
super(MAVAC, self).__init__()
agent_obs_shape: int = squeeze(agent_obs_shape)
global_obs_shape: int = squeeze(global_obs_shape)
action_shape: int = squeeze(action_shape)
self.global_obs_shape, self.agent_obs_shape, self.action_shape = global_obs_shape, agent_obs_shape, action_shape
self.action_space = action_space
# Encoder Type
# We directly connect the Head after a Liner layer instead of using the 3-layer FCEncoder.
# In SMAC task it can obviously improve the performance.
# Users can change the model according to their own needs.
self.actor_encoder = nn.Identity()
self.critic_encoder = nn.Identity()
# Head Type
self.critic_head = nn.Sequential(
nn.Linear(global_obs_shape, critic_head_hidden_size), activation,
RegressionHead(
critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type
)
)
assert self.action_space in ['discrete', 'continuous'], self.action_space
if self.action_space == 'discrete':
self.actor_head = nn.Sequential(
nn.Linear(agent_obs_shape, actor_head_hidden_size), activation,
DiscreteHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
activation=activation,
norm_type=norm_type
)
)
elif self.action_space == 'continuous':
self.actor_head = nn.Sequential(
nn.Linear(agent_obs_shape, actor_head_hidden_size), activation,
ReparameterizationHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
sigma_type=sigma_type,
activation=activation,
norm_type=norm_type,
bound_type=bound_type
)
)
# must use list, not nn.ModuleList
self.actor = [self.actor_encoder, self.actor_head]
self.critic = [self.critic_encoder, self.critic_head]
# for convenience of call some apis(such as: self.critic.parameters()), but may cause
# misunderstanding when print(self)
self.actor = nn.ModuleList(self.actor)
self.critic = nn.ModuleList(self.critic)
def forward(self, inputs: Union[torch.Tensor, Dict], mode: str) -> Dict:
"""
Overview:
MAVAC forward computation graph, input observation tensor to predict state value or action logit. \
``mode`` includes ``compute_actor``, ``compute_critic``, ``compute_actor_critic``.
Different ``mode`` will forward with different network modules to get different outputs and save \
computation.
Arguments:
- inputs (:obj:`Dict`): The input dict including observation and related info, \
whose key-values vary from different ``mode``.
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class.
Returns:
- outputs (:obj:`Dict`): The output dict of MAVAC's forward computation graph, whose key-values vary from \
different ``mode``.
Examples (Actor):
>>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14)
>>> inputs = {
'agent_state': torch.randn(10, 8, 64),
'global_state': torch.randn(10, 8, 128),
'action_mask': torch.randint(0, 2, size=(10, 8, 14))
}
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['logit'].shape == torch.Size([10, 8, 14])
Examples (Critic):
>>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14)
>>> inputs = {
'agent_state': torch.randn(10, 8, 64),
'global_state': torch.randn(10, 8, 128),
'action_mask': torch.randint(0, 2, size=(10, 8, 14))
}
>>> critic_outputs = model(inputs,'compute_critic')
>>> assert actor_outputs['value'].shape == torch.Size([10, 8])
Examples (Actor-Critic):
>>> model = MAVAC(64, 64)
>>> inputs = {
'agent_state': torch.randn(10, 8, 64),
'global_state': torch.randn(10, 8, 128),
'action_mask': torch.randint(0, 2, size=(10, 8, 14))
}
>>> outputs = model(inputs,'compute_actor_critic')
>>> assert outputs['value'].shape == torch.Size([10, 8, 14])
>>> assert outputs['logit'].shape == torch.Size([10, 8])
"""
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
return getattr(self, mode)(inputs)
def compute_actor(self, x: Dict) -> Dict:
"""
Overview:
MAVAC forward computation graph for actor part, \
predicting action logit with agent observation tensor in ``x``.
Arguments:
- x (:obj:`Dict`): Input data dict with keys ['agent_state', 'action_mask'(optional)].
- agent_state: (:obj:`torch.Tensor`): Each agent local state(obs).
- action_mask(optional): (:obj:`torch.Tensor`): When ``action_space`` is discrete, action_mask needs \
to be provided to mask illegal actions.
Returns:
- outputs (:obj:`Dict`): The output dict of the forward computation graph for actor, including ``logit``.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \
the same dimension real-value ranged tensor of possible action choices, and for continuous action \
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \
same as the number of continuous actions.
Shapes:
- logit (:obj:`torch.FloatTensor`): :math:`(B, M, N)`, where B is batch size and N is ``action_shape`` \
and M is ``agent_num``.
Examples:
>>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14)
>>> inputs = {
'agent_state': torch.randn(10, 8, 64),
'global_state': torch.randn(10, 8, 128),
'action_mask': torch.randint(0, 2, size=(10, 8, 14))
}
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['logit'].shape == torch.Size([10, 8, 14])
"""
if self.action_space == 'discrete':
action_mask = x['action_mask']
x = x['agent_state']
x = self.actor_encoder(x)
x = self.actor_head(x)
logit = x['logit']
logit[action_mask == 0.0] = -99999999
elif self.action_space == 'continuous':
x = x['agent_state']
x = self.actor_encoder(x)
x = self.actor_head(x)
logit = x
return {'logit': logit}
def compute_critic(self, x: Dict) -> Dict:
"""
Overview:
MAVAC forward computation graph for critic part. \
Predict state value with global observation tensor in ``x``.
Arguments:
- x (:obj:`Dict`): Input data dict with keys ['global_state'].
- global_state: (:obj:`torch.Tensor`): Global state(obs).
Returns:
- outputs (:obj:`Dict`): The output dict of MAVAC's forward computation graph for critic, \
including ``value``.
ReturnsKeys:
- value (:obj:`torch.Tensor`): The predicted state value tensor.
Shapes:
- value (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is ``agent_num``.
Examples:
>>> model = MAVAC(agent_obs_shape=64, global_obs_shape=128, action_shape=14)
>>> inputs = {
'agent_state': torch.randn(10, 8, 64),
'global_state': torch.randn(10, 8, 128),
'action_mask': torch.randint(0, 2, size=(10, 8, 14))
}
>>> critic_outputs = model(inputs,'compute_critic')
>>> assert critic_outputs['value'].shape == torch.Size([10, 8])
"""
x = self.critic_encoder(x['global_state'])
x = self.critic_head(x)
return {'value': x['pred']}
def compute_actor_critic(self, x: Dict) -> Dict:
"""
Overview:
MAVAC forward computation graph for both actor and critic part, input observation to predict action \
logit and state value.
Arguments:
- x (:obj:`Dict`): The input dict contains ``agent_state``, ``global_state`` and other related info.
Returns:
- outputs (:obj:`Dict`): The output dict of MAVAC's forward computation graph for both actor and critic, \
including ``logit`` and ``value``.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit encoding tensor, with same size as input ``x``.
- value (:obj:`torch.Tensor`): Q value tensor with same size as batch size.
Shapes:
- logit (:obj:`torch.FloatTensor`): :math:`(B, M, N)`, where B is batch size and N is ``action_shape`` \
and M is ``agent_num``.
- value (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch sizeand M is ``agent_num``.
Examples:
>>> model = MAVAC(64, 64)
>>> inputs = {
'agent_state': torch.randn(10, 8, 64),
'global_state': torch.randn(10, 8, 128),
'action_mask': torch.randint(0, 2, size=(10, 8, 14))
}
>>> outputs = model(inputs,'compute_actor_critic')
>>> assert outputs['value'].shape == torch.Size([10, 8])
>>> assert outputs['logit'].shape == torch.Size([10, 8, 14])
"""
logit = self.compute_actor(x)['logit']
value = self.compute_critic(x)['value']
return {'logit': logit, 'value': value}
|