File size: 11,800 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from typing import Union, Optional, Dict
from easydict import EasyDict

import torch
import torch.nn as nn

from ding.torch_utils import get_lstm
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, RegressionHead


@MODEL_REGISTRY.register('pdqn')
class PDQN(nn.Module):
    """
    Overview:
        The neural network and computation graph of PDQN(https://arxiv.org/abs/1810.06394v1) and \
        MPDQN(https://arxiv.org/abs/1905.04388) algorithms for parameterized action space. \
        This model supports parameterized action space with discrete ``action_type`` and continuous ``action_arg``. \
        In principle, PDQN consists of x network (continuous action parameter network) and Q network (discrete \
        action type network). But for simplicity, the code is split into ``encoder`` and ``actor_head``, which \
        contain the encoder and head of the above two networks respectively.
    Interface:
        ``__init__``, ``forward``, ``compute_discrete``, ``compute_continuous``.
    """
    mode = ['compute_discrete', 'compute_continuous']

    def __init__(
            self,
            obs_shape: Union[int, SequenceType],
            action_shape: EasyDict,
            encoder_hidden_size_list: SequenceType = [128, 128, 64],
            dueling: bool = True,
            head_hidden_size: Optional[int] = None,
            head_layer_num: int = 1,
            activation: Optional[nn.Module] = nn.ReLU(),
            norm_type: Optional[str] = None,
            multi_pass: Optional[bool] = False,
            action_mask: Optional[list] = None
    ) -> None:
        """
        Overview:
            Init the PDQN (encoder + head) Model according to input arguments.
        Arguments:
            - obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
            - action_shape (:obj:`EasyDict`): Action space shape in dict type, such as \
                EasyDict({'action_type_shape': 3, 'action_args_shape': 5}).
            - encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
                the last element must match ``head_hidden_size``.
            - dueling (:obj:`dueling`): Whether choose ``DuelingHead`` or ``DiscreteHead(default)``.
            - head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network.
            - head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
            - activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
                if ``None`` then default set it to ``nn.ReLU()``.
            - norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
                ``ding.torch_utils.fc_block`` for more details.
            - multi_pass (:obj:`Optional[bool]`): Whether to use multi pass version.
            - action_mask: (:obj:`Optional[list]`): An action mask indicating how action args are \
                associated to each discrete action. For example, if there are 3 discrete action, \
                4 continous action args, and the first discrete action associates with the first \
                continuous action args, the second discrete action associates with the second continuous \
                action args, and the third discrete action associates with the remaining 2 action args, \
                the action mask will be like: [[1,0,0,0],[0,1,0,0],[0,0,1,1]] with shape 3*4.
        """
        super(PDQN, self).__init__()
        self.multi_pass = multi_pass
        if self.multi_pass:
            assert isinstance(
                action_mask, list
            ), 'Please indicate action mask in list form if you set multi_pass to True'
            self.action_mask = torch.LongTensor(action_mask)
            nonzero = torch.nonzero(self.action_mask)
            index = torch.zeros(action_shape.action_args_shape).long()
            index.scatter_(dim=0, index=nonzero[:, 1], src=nonzero[:, 0])
            self.action_scatter_index = index  # (self.action_args_shape, )

        # squeeze action shape input like (3,) to 3
        action_shape.action_args_shape = squeeze(action_shape.action_args_shape)
        action_shape.action_type_shape = squeeze(action_shape.action_type_shape)
        self.action_args_shape = action_shape.action_args_shape
        self.action_type_shape = action_shape.action_type_shape

        # init head hidden size
        if head_hidden_size is None:
            head_hidden_size = encoder_hidden_size_list[-1]

        # squeeze obs input for compatibility: 1, (1, ), [4, 32, 32]
        obs_shape = squeeze(obs_shape)

        # Obs Encoder Type
        if isinstance(obs_shape, int) or len(obs_shape) == 1:  # FC Encoder
            self.dis_encoder = FCEncoder(
                obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type
            )
            self.cont_encoder = FCEncoder(
                obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type
            )
        elif len(obs_shape) == 3:  # Conv Encoder
            self.dis_encoder = ConvEncoder(
                obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type
            )
            self.cont_encoder = ConvEncoder(
                obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type
            )
        else:
            raise RuntimeError(
                "Pre-defined encoder not support obs_shape {}, please customize your own PDQN.".format(obs_shape)
            )

        # Continuous Action Head Type
        self.cont_head = RegressionHead(
            head_hidden_size,
            action_shape.action_args_shape,
            head_layer_num,
            final_tanh=True,
            activation=activation,
            norm_type=norm_type
        )

        # Discrete Action Head Type
        if dueling:
            dis_head_cls = DuelingHead
        else:
            dis_head_cls = DiscreteHead
        self.dis_head = dis_head_cls(
            head_hidden_size + action_shape.action_args_shape,
            action_shape.action_type_shape,
            head_layer_num,
            activation=activation,
            norm_type=norm_type
        )

        self.actor_head = nn.ModuleList([self.dis_head, self.cont_head])
        # self.encoder = nn.ModuleList([self.dis_encoder, self.cont_encoder])
        # To speed up the training process, the X network and the Q network share the encoder for the state
        self.encoder = nn.ModuleList([self.cont_encoder, self.cont_encoder])

    def forward(self, inputs: Union[torch.Tensor, Dict, EasyDict], mode: str) -> Dict:
        """
        Overview:
            PDQN forward computation graph, input observation tensor to predict q_value for \
            discrete actions and values for continuous action_args.
        Arguments:
            - inputs (:obj:`Union[torch.Tensor, Dict, EasyDict]`): Inputs including observation and \
                other info according to `mode`.
            - mode (:obj:`str`): Name of the forward mode.
        Shapes:
            - inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``.
        """
        assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
        return getattr(self, mode)(inputs)

    def compute_continuous(self, inputs: torch.Tensor) -> Dict:
        """
        Overview:
            Use observation tensor to predict continuous action args.
        Arguments:
            - inputs (:obj:`torch.Tensor`): Observation inputs.
        Returns:
            - outputs (:obj:`Dict`): A dict with key 'action_args'.
                - 'action_args' (:obj:`torch.Tensor`): The continuous action args.
        Shapes:
            - inputs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``.
            - action_args (:obj:`torch.Tensor`): :math:`(B, M)`, where M is ``action_args_shape``.
        Examples:
            >>> act_shape = EasyDict({'action_type_shape': (3, ), 'action_args_shape': (5, )})
            >>> model = PDQN(4, act_shape)
            >>> inputs = torch.randn(64, 4)
            >>> outputs = model.forward(inputs, mode='compute_continuous')
            >>> assert outputs['action_args'].shape == torch.Size([64, 5])
        """
        cont_x = self.encoder[1](inputs)  # size (B, encoded_state_shape)
        action_args = self.actor_head[1](cont_x)['pred']  # size (B, action_args_shape)
        outputs = {'action_args': action_args}
        return outputs

    def compute_discrete(self, inputs: Union[Dict, EasyDict]) -> Dict:
        """
        Overview:
            Use observation tensor and continuous action args to predict discrete action types.
        Arguments:
            - inputs (:obj:`Union[Dict, EasyDict]`): A dict with keys 'state', 'action_args'.
                - state (:obj:`torch.Tensor`): Observation inputs.
                - action_args (:obj:`torch.Tensor`): Action parameters are used to concatenate with the observation \
                    and serve as input to the discrete action type network.
        Returns:
            - outputs (:obj:`Dict`): A dict with keys 'logit', 'action_args'.
                -  'logit': The logit value for each discrete action.
                -  'action_args': The continuous action args(same as the inputs['action_args']) for later usage.
        Examples:
            >>> act_shape = EasyDict({'action_type_shape': (3, ), 'action_args_shape': (5, )})
            >>> model = PDQN(4, act_shape)
            >>> inputs = {'state': torch.randn(64, 4), 'action_args': torch.randn(64, 5)}
            >>> outputs = model.forward(inputs, mode='compute_discrete')
            >>> assert outputs['logit'].shape == torch.Size([64, 3])
            >>> assert outputs['action_args'].shape == torch.Size([64, 5])
        """
        dis_x = self.encoder[0](inputs['state'])  # size (B, encoded_state_shape)
        action_args = inputs['action_args']  # size (B, action_args_shape)

        if self.multi_pass:  # mpdqn
            # fill_value=-2 is a mask value, which is not in normal acton range
            # (B, action_args_shape, K) where K is the action_type_shape
            mp_action = torch.full(
                (dis_x.shape[0], self.action_args_shape, self.action_type_shape),
                fill_value=-2,
                device=dis_x.device,
                dtype=dis_x.dtype
            )
            index = self.action_scatter_index.view(1, -1, 1).repeat(dis_x.shape[0], 1, 1).to(dis_x.device)

            # index: (B, action_args_shape, 1)  src: (B, action_args_shape, 1)
            mp_action.scatter_(dim=-1, index=index, src=action_args.unsqueeze(-1))
            mp_action = mp_action.permute(0, 2, 1)  # (B, K, action_args_shape)

            mp_state = dis_x.unsqueeze(1).repeat(1, self.action_type_shape, 1)  # (B, K, obs_shape)
            mp_state_action_cat = torch.cat([mp_state, mp_action], dim=-1)

            logit = self.actor_head[0](mp_state_action_cat)['logit']  # (B, K, K)

            logit = torch.diagonal(logit, dim1=-2, dim2=-1)  # (B, K)
        else:  # pdqn
            # size (B, encoded_state_shape + action_args_shape)
            if len(action_args.shape) == 1:  # (B, ) -> (B, 1)
                action_args = action_args.unsqueeze(1)
            state_action_cat = torch.cat((dis_x, action_args), dim=-1)
            logit = self.actor_head[0](state_action_cat)['logit']  # size (B, K) where K is action_type_shape

        outputs = {'logit': logit, 'action_args': action_args}
        return outputs