File size: 58,369 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 |
from typing import Union, Optional, Dict, Callable, List
import torch
import torch.nn as nn
from ding.torch_utils import get_lstm
from ding.utils import MODEL_REGISTRY, SequenceType, squeeze
from ..common import FCEncoder, ConvEncoder, DiscreteHead, DuelingHead, MultiHead, RainbowHead, \
QuantileHead, FQFHead, QRDQNHead, DistributionHead, BranchingHead
from ding.torch_utils.network.gtrxl import GTrXL
@MODEL_REGISTRY.register('dqn')
class DQN(nn.Module):
"""
Overview:
The neural nework structure and computation graph of Deep Q Network (DQN) algorithm, which is the most classic \
value-based RL algorithm for discrete action. The DQN is composed of two parts: ``encoder`` and ``head``. \
The ``encoder`` is used to extract the feature from various observation, and the ``head`` is used to compute \
the Q value of each action dimension.
Interfaces:
``__init__``, ``forward``.
.. note::
Current ``DQN`` supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``, two types of head: \
``DiscreteHead`` and ``DuelingHead``. You can customize your own encoder or head by inheriting this class.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
dueling: bool = True,
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
dropout: Optional[float] = None
) -> None:
"""
Overview:
initialize the DQN (encoder + head) Model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- dueling (:obj:`Optional[bool]`): Whether choose ``DuelingHead`` or ``DiscreteHead (default)``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \
then it will be set to the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- dropout (:obj:`Optional[float]`): The dropout rate of the dropout layer. \
if ``None`` then default disable dropout layer.
"""
super(DQN, self).__init__()
# Squeeze data from tuple, list or dict to single object. For example, from (4, ) to 4
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type, dropout=dropout
)
# Conv Encoder
elif len(obs_shape) == 3:
assert dropout is None, "dropout is not supported in ConvEncoder"
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape)
)
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type,
dropout=dropout
)
else:
self.head = head_cls(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
dropout=dropout
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
DQN forward computation graph, input observation tensor to predict q_value.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output of DQN's forward, including q_value.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
Examples:
>>> model = DQN(32, 6) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 32)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 6])
.. note::
For consistency and compatibility, we name all the outputs of the network which are related to action \
selections as ``logit``.
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('bdq')
class BDQ(nn.Module):
def __init__(
self,
obs_shape: Union[int, SequenceType],
num_branches: int = 0,
action_bins_per_branch: int = 2,
layer_num: int = 3,
a_layer_num: Optional[int] = None,
v_layer_num: Optional[int] = None,
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
norm_type: Optional[nn.Module] = None,
activation: Optional[nn.Module] = nn.ReLU(),
) -> None:
"""
Overview:
Init the BDQ (encoder + head) Model according to input arguments. \
referenced paper Action Branching Architectures for Deep Reinforcement Learning \
<https://arxiv.org/pdf/1711.08946>
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- num_branches (:obj:`int`): The number of branches, which is equivalent to the action dimension, \
such as 6 in mujoco's halfcheetah environment.
- action_bins_per_branch (:obj:`int`): The number of actions in each dimension.
- layer_num (:obj:`int`): The number of layers used in the network to compute Advantage and Value output.
- a_layer_num (:obj:`int`): The number of layers used in the network to compute Advantage output.
- v_layer_num (:obj:`int`): The number of layers used in the network to compute Value output.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``
"""
super(BDQ, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, num_branches = squeeze(obs_shape), squeeze(num_branches)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# backbone
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own DQN".format(obs_shape)
)
self.num_branches = num_branches
self.action_bins_per_branch = action_bins_per_branch
# head
self.head = BranchingHead(
head_hidden_size,
num_branches=self.num_branches,
action_bins_per_branch=self.action_bins_per_branch,
layer_num=layer_num,
a_layer_num=a_layer_num,
v_layer_num=v_layer_num,
activation=activation,
norm_type=norm_type
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
BDQ forward computation graph, input observation tensor to predict q_value.
Arguments:
- x (:obj:`torch.Tensor`): Observation inputs
Returns:
- outputs (:obj:`Dict`): BDQ forward outputs, such as q_value.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each action dimension.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where B is batch size and M is
``num_branches * action_bins_per_branch``
Examples:
>>> model = BDQ(8, 5, 2) # arguments: 'obs_shape', 'num_branches' and 'action_bins_per_branch'.
>>> inputs = torch.randn(4, 8)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict) and outputs['logit'].shape == torch.Size([4, 5, 2])
"""
x = self.encoder(x) / (self.num_branches + 1) # corresponds to the "Gradient Rescaling" in the paper
x = self.head(x)
return x
@MODEL_REGISTRY.register('c51dqn')
class C51DQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of C51DQN, which combines distributional RL and DQN. \
You can refer to https://arxiv.org/pdf/1707.06887.pdf for more details. The C51DQN is composed of \
``encoder`` and ``head``. ``encoder`` is used to extract the feature of observation, and ``head`` is \
used to compute the distribution of Q-value.
Interfaces:
``__init__``, ``forward``
.. note::
Current C51DQN supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: int = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
v_min: Optional[float] = -10,
v_max: Optional[float] = 10,
n_atom: Optional[int] = 51,
) -> None:
"""
Overview:
initialize the C51 Model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \
then it will be set to the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- v_min (:obj:`Optional[float]`): The minimum value of the support of the distribution, which is related \
to the value (discounted sum of reward) scale of the specific environment. Defaults to -10.
- v_max (:obj:`Optional[float]`): The maximum value of the support of the distribution, which is related \
to the value (discounted sum of reward) scale of the specific environment. Defaults to 10.
- n_atom (:obj:`Optional[int]`): The number of atoms in the prediction distribution, 51 is the default \
value in the paper, you can also try other values such as 301.
"""
super(C51DQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own C51DQN".format(obs_shape)
)
# Head Type
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
DistributionHead,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
else:
self.head = DistributionHead(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
C51DQN forward computation graph, input observation tensor to predict q_value and its distribution.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output of DQN's forward, including q_value, and distribution.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension.
- distribution (:obj:`torch.Tensor`): Q-Value discretized distribution, i.e., probability of each \
uniformly spaced atom Q-value, such as dividing [-10, 10] into 51 uniform spaces.
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where M is action_shape.
- distribution(:obj:`torch.Tensor`): :math:`(B, M, P)`, where P is n_atom.
Examples:
>>> model = C51DQN(128, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 128)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> # default head_hidden_size: int = 64,
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default n_atom: int = 51
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51])
.. note::
For consistency and compatibility, we name all the outputs of the network which are related to action \
selections as ``logit``.
.. note::
For convenience, we recommend that the number of atoms should be odd, so that the middle atom is exactly \
the value of the Q-value.
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('qrdqn')
class QRDQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of QRDQN, which combines distributional RL and DQN. \
You can refer to Distributional Reinforcement Learning with Quantile Regression \
https://arxiv.org/pdf/1710.10044.pdf for more details.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
num_quantiles: int = 32,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the QRDQN Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation's space.
- action_shape (:obj:`Union[int, SequenceType]`): Action's space.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details`
"""
super(QRDQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own QRDQN".format(obs_shape)
)
# Head Type
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
QRDQNHead,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
num_quantiles=num_quantiles,
activation=activation,
norm_type=norm_type,
)
else:
self.head = QRDQNHead(
head_hidden_size,
action_shape,
head_layer_num,
num_quantiles=num_quantiles,
activation=activation,
norm_type=norm_type,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use observation tensor to predict QRDQN's output.
Parameter updates with QRDQN's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`):
Run with encoder and head. Return the result prediction dictionary.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``.
- q (:obj:`torch.Tensor`): Q valye tensor tensor of size ``(B, N, num_quantiles)``
- tau (:obj:`torch.Tensor`): tau tensor of size ``(B, N, 1)``
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape.
- tau (:obj:`torch.Tensor`): :math:`(B, M, 1)`
Examples:
>>> model = QRDQN(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles : int = 32
>>> assert outputs['q'].shape == torch.Size([4, 64, 32])
>>> assert outputs['tau'].shape == torch.Size([4, 32, 1])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('iqn')
class IQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of IQN, which combines distributional RL and DQN. \
You can refer to paper Implicit Quantile Networks for Distributional Reinforcement Learning \
https://arxiv.org/pdf/1806.06923.pdf for more details.
Interfaces:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
num_quantiles: int = 32,
quantile_embedding_size: int = 128,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None
) -> None:
"""
Overview:
Initialize the IQN Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape.
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details.
"""
super(IQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own IQN".format(obs_shape)
)
# Head Type
head_cls = QuantileHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to predict IQN's output.
Parameter updates with IQN's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`):
Run with encoder and head. Return the result prediction dictionary.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``.
- q (:obj:`torch.Tensor`): Q valye tensor tensor of size ``(num_quantiles, N, B)``
- quantiles (:obj:`torch.Tensor`): quantiles tensor of size ``(quantile_embedding_size, 1)``
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape
- quantiles (:obj:`torch.Tensor`): :math:`(P, 1)`, where P is quantile_embedding_size.
Examples:
>>> model = IQN(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles: int = 32
>>> assert outputs['q'].shape == torch.Size([32, 4, 64]
>>> # default quantile_embedding_size: int = 128
>>> assert outputs['quantiles'].shape == torch.Size([128, 1])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('fqf')
class FQF(nn.Module):
"""
Overview:
The neural network structure and computation graph of FQF, which combines distributional RL and DQN. \
You can refer to paper Fully Parameterized Quantile Function for Distributional Reinforcement Learning \
https://arxiv.org/pdf/1911.02140.pdf for more details.
Interface:
``__init__``, ``forward``
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
num_quantiles: int = 32,
quantile_embedding_size: int = 128,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None
) -> None:
"""
Overview:
Initialize the FQF Model according to input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape.
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- num_quantiles (:obj:`int`): Number of quantiles in the prediction distribution.
- activation (:obj:`Optional[nn.Module]`):
The type of activation function to use in ``MLP`` the after ``layer_fn``,
if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`):
The type of normalization to use, see ``ding.torch_utils.fc_block`` for more details.
"""
super(FQF, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own FQF".format(obs_shape)
)
# Head Type
head_cls = FQFHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
num_quantiles=num_quantiles,
quantile_embedding_size=quantile_embedding_size,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use encoded embedding tensor to predict FQF's output.
Parameter updates with FQF's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`): Dict containing keywords ``logit`` (:obj:`torch.Tensor`), \
``q`` (:obj:`torch.Tensor`), ``quantiles`` (:obj:`torch.Tensor`), \
``quantiles_hats`` (:obj:`torch.Tensor`), \
``q_tau_i`` (:obj:`torch.Tensor`), ``entropies`` (:obj:`torch.Tensor`).
Shapes:
- x: :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit: :math:`(B, M)`, where M is action_shape.
- q: :math:`(B, num_quantiles, M)`.
- quantiles: :math:`(B, num_quantiles + 1)`.
- quantiles_hats: :math:`(B, num_quantiles)`.
- q_tau_i: :math:`(B, num_quantiles - 1, M)`.
- entropies: :math:`(B, 1)`.
Examples:
>>> model = FQF(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default num_quantiles: int = 32
>>> assert outputs['q'].shape == torch.Size([4, 32, 64])
>>> assert outputs['quantiles'].shape == torch.Size([4, 33])
>>> assert outputs['quantiles_hats'].shape == torch.Size([4, 32])
>>> assert outputs['q_tau_i'].shape == torch.Size([4, 31, 64])
>>> assert outputs['quantiles'].shape == torch.Size([4, 1])
"""
x = self.encoder(x)
x = self.head(x)
return x
@MODEL_REGISTRY.register('rainbowdqn')
class RainbowDQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of RainbowDQN, which combines distributional RL and DQN. \
You can refer to paper Rainbow: Combining Improvements in Deep Reinforcement Learning \
https://arxiv.org/pdf/1710.02298.pdf for more details.
Interfaces:
``__init__``, ``forward``
.. note::
RainbowDQN contains dueling architecture by default.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
v_min: Optional[float] = -10,
v_max: Optional[float] = 10,
n_atom: Optional[int] = 51,
) -> None:
"""
Overview:
Init the Rainbow Model according to arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape.
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` to pass to ``Head``.
- head_layer_num (:obj:`int`): The num of layers used in the network to compute Q value output
- activation (:obj:`Optional[nn.Module]`): The type of activation function to use in ``MLP`` the after \
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``
- norm_type (:obj:`Optional[str]`): The type of normalization to use, see ``ding.torch_utils.fc_block`` \
for more details`
- n_atom (:obj:`Optional[int]`): Number of atoms in the prediction distribution.
"""
super(RainbowDQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own RainbowDQN".
format(obs_shape)
)
# Head Type
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
RainbowHead,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
else:
self.head = RainbowHead(
head_hidden_size,
action_shape,
head_layer_num,
activation=activation,
norm_type=norm_type,
n_atom=n_atom,
v_min=v_min,
v_max=v_max,
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Use observation tensor to predict Rainbow output.
Parameter updates with Rainbow's MLPs forward setup.
Arguments:
- x (:obj:`torch.Tensor`):
The encoded embedding tensor with ``(B, N=hidden_size)``.
Returns:
- outputs (:obj:`Dict`):
Run ``MLP`` with ``RainbowHead`` setups and return the result prediction dictionary.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Logit tensor with same size as input ``x``.
- distribution (:obj:`torch.Tensor`): Distribution tensor of size ``(B, N, n_atom)``
Shapes:
- x (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is head_hidden_size.
- logit (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is action_shape.
- distribution(:obj:`torch.FloatTensor`): :math:`(B, M, P)`, where P is n_atom.
Examples:
>>> model = RainbowDQN(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs)
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == torch.Size([4, 64])
>>> # default n_atom: int =51
>>> assert outputs['distribution'].shape == torch.Size([4, 64, 51])
"""
x = self.encoder(x)
x = self.head(x)
return x
def parallel_wrapper(forward_fn: Callable) -> Callable:
"""
Overview:
Process timestep T and batch_size B at the same time, in other words, treat different timestep data as
different trajectories in a batch.
Arguments:
- forward_fn (:obj:`Callable`): Normal ``nn.Module`` 's forward function.
Returns:
- wrapper (:obj:`Callable`): Wrapped function.
"""
def wrapper(x: torch.Tensor) -> Union[torch.Tensor, List[torch.Tensor]]:
T, B = x.shape[:2]
def reshape(d):
if isinstance(d, list):
d = [reshape(t) for t in d]
elif isinstance(d, dict):
d = {k: reshape(v) for k, v in d.items()}
else:
d = d.reshape(T, B, *d.shape[1:])
return d
# NOTE(rjy): the initial input shape will be (T, B, N),
# means encoder or head should process B trajectorys, each trajectory has T timestep,
# but T and B dimension can be both treated as batch_size in encoder and head,
# i.e., independent and parallel processing,
# so here we need such fn to reshape for encoder or head
x = x.reshape(T * B, *x.shape[2:])
x = forward_fn(x)
x = reshape(x)
return x
return wrapper
@MODEL_REGISTRY.register('drqn')
class DRQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of DRQN (DQN + RNN = DRQN) algorithm, which is the most \
common DQN variant for sequential data and paratially observable environment. The DRQN is composed of three \
parts: ``encoder``, ``head`` and ``rnn``. The ``encoder`` is used to extract the feature from various \
observation, the ``rnn`` is used to process the sequential observation and other data, and the ``head`` is \
used to compute the Q value of each action dimension.
Interfaces:
``__init__``, ``forward``.
.. note::
Current ``DRQN`` supports two types of encoder: ``FCEncoder`` and ``ConvEncoder``, two types of head: \
``DiscreteHead`` and ``DuelingHead``, three types of rnn: ``normal (LSTM with LayerNorm)``, ``pytorch`` and \
``gru``. You can customize your own encoder, rnn or head by inheriting this class.
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
encoder_hidden_size_list: SequenceType = [128, 128, 64],
dueling: bool = True,
head_hidden_size: Optional[int] = None,
head_layer_num: int = 1,
lstm_type: Optional[str] = 'normal',
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
res_link: bool = False
) -> None:
"""
Overview:
Initialize the DRQN Model according to the corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- dueling (:obj:`Optional[bool]`): Whether choose ``DuelingHead`` or ``DiscreteHead (default)``.
- head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of head network, defaults to None, \
then it will be set to the last element of ``encoder_hidden_size_list``.
- head_layer_num (:obj:`int`): The number of layers used in the head network to compute Q value output.
- lstm_type (:obj:`Optional[str]`): The type of RNN module, now support ['normal', 'pytorch', 'gru'].
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- res_link (:obj:`bool`): Whether to enable the residual link, which is the skip connnection between \
single frame data and the sequential data, defaults to False.
"""
super(DRQN, self).__init__()
# For compatibility: 1, (1, ), [4, 32, 32]
obs_shape, action_shape = squeeze(obs_shape), squeeze(action_shape)
if head_hidden_size is None:
head_hidden_size = encoder_hidden_size_list[-1]
# FC Encoder
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.encoder = FCEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
# Conv Encoder
elif len(obs_shape) == 3:
self.encoder = ConvEncoder(obs_shape, encoder_hidden_size_list, activation=activation, norm_type=norm_type)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own DRQN".format(obs_shape)
)
# LSTM Type
self.rnn = get_lstm(lstm_type, input_size=head_hidden_size, hidden_size=head_hidden_size)
self.res_link = res_link
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
head_hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=norm_type
)
else:
self.head = head_cls(
head_hidden_size, action_shape, head_layer_num, activation=activation, norm_type=norm_type
)
def forward(self, inputs: Dict, inference: bool = False, saved_state_timesteps: Optional[list] = None) -> Dict:
"""
Overview:
DRQN forward computation graph, input observation tensor to predict q_value.
Arguments:
- inputs (:obj:`torch.Tensor`): The dict of input data, including observation and previous rnn state.
- inference: (:obj:'bool'): Whether to enable inference forward mode, if True, we unroll the one timestep \
transition, otherwise, we unroll the eentire sequence transitions.
- saved_state_timesteps: (:obj:'Optional[list]'): When inference is False, we unroll the sequence \
transitions, then we would use this list to indicate how to save and return hidden state.
ArgumentsKeys:
- obs (:obj:`torch.Tensor`): The raw observation tensor.
- prev_state (:obj:`list`): The previous rnn state tensor, whose structure depends on ``lstm_type``.
Returns:
- outputs (:obj:`Dict`): The output of DRQN's forward, including logit (q_value) and next state.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): Discrete Q-value output of each possible action dimension.
- next_state (:obj:`list`): The next rnn state tensor, whose structure depends on ``lstm_type``.
Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``obs_shape``
- logit (:obj:`torch.Tensor`): :math:`(B, M)`, where B is batch size and M is ``action_shape``
Examples:
>>> # Init input's Keys:
>>> prev_state = [[torch.randn(1, 1, 64) for __ in range(2)] for _ in range(4)] # B=4
>>> obs = torch.randn(4,64)
>>> model = DRQN(64, 64) # arguments: 'obs_shape' and 'action_shape'
>>> outputs = model({'obs': inputs, 'prev_state': prev_state}, inference=True)
>>> # Check outputs's Keys
>>> assert isinstance(outputs, dict)
>>> assert outputs['logit'].shape == (4, 64)
>>> assert len(outputs['next_state']) == 4
>>> assert all([len(t) == 2 for t in outputs['next_state']])
>>> assert all([t[0].shape == (1, 1, 64) for t in outputs['next_state']])
"""
x, prev_state = inputs['obs'], inputs['prev_state']
# for both inference and other cases, the network structure is encoder -> rnn network -> head
# the difference is inference take the data with seq_len=1 (or T = 1)
# NOTE(rjy): in most situations, set inference=True when evaluate and inference=False when training
if inference:
x = self.encoder(x)
if self.res_link:
a = x
x = x.unsqueeze(0) # for rnn input, put the seq_len of x as 1 instead of none.
# prev_state: DataType: List[Tuple[torch.Tensor]]; Initially, it is a list of None
x, next_state = self.rnn(x, prev_state)
x = x.squeeze(0) # to delete the seq_len dim to match head network input
if self.res_link:
x = x + a
x = self.head(x)
x['next_state'] = next_state
return x
else:
# In order to better explain why rnn needs saved_state and which states need to be stored,
# let's take r2d2 as an example
# in r2d2,
# 1) data['burnin_nstep_obs'] = data['obs'][:bs + self._nstep]
# 2) data['main_obs'] = data['obs'][bs:-self._nstep]
# 3) data['target_obs'] = data['obs'][bs + self._nstep:]
# NOTE(rjy): (T, B, N) or (T, B, C, H, W)
assert len(x.shape) in [3, 5], x.shape
x = parallel_wrapper(self.encoder)(x) # (T, B, N)
if self.res_link:
a = x
# NOTE(rjy) lstm_embedding stores all hidden_state
lstm_embedding = []
# TODO(nyz) how to deal with hidden_size key-value
hidden_state_list = []
if saved_state_timesteps is not None:
saved_state = []
for t in range(x.shape[0]): # T timesteps
# NOTE(rjy) use x[t:t+1] but not x[t] can keep original dimension
output, prev_state = self.rnn(x[t:t + 1], prev_state) # output: (1,B, head_hidden_size)
if saved_state_timesteps is not None and t + 1 in saved_state_timesteps:
saved_state.append(prev_state)
lstm_embedding.append(output)
hidden_state = [p['h'] for p in prev_state]
# only keep ht, {list: x.shape[0]{Tensor:(1, batch_size, head_hidden_size)}}
hidden_state_list.append(torch.cat(hidden_state, dim=1))
x = torch.cat(lstm_embedding, 0) # (T, B, head_hidden_size)
if self.res_link:
x = x + a
x = parallel_wrapper(self.head)(x) # (T, B, action_shape)
# NOTE(rjy): x['next_state'] is the hidden state of the last timestep inputted to lstm
# the last timestep state including the hidden state (h) and the cell state (c)
# shape: {list: B{dict: 2{Tensor:(1, 1, head_hidden_size}}}
x['next_state'] = prev_state
# all hidden state h, this returns a tensor of the dim: seq_len*batch_size*head_hidden_size
# This key is used in qtran, the algorithm requires to retain all h_{t} during training
x['hidden_state'] = torch.cat(hidden_state_list, dim=0)
if saved_state_timesteps is not None:
# the selected saved hidden states, including the hidden state (h) and the cell state (c)
# in r2d2, set 'saved_hidden_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]',
# then saved_state will record the hidden_state for main_obs and target_obs to
# initialize their lstm (h c)
x['saved_state'] = saved_state
return x
@MODEL_REGISTRY.register('gtrxldqn')
class GTrXLDQN(nn.Module):
"""
Overview:
The neural network structure and computation graph of Gated Transformer-XL DQN algorithm, which is the \
enhanced version of DRQN, using Transformer-XL to improve long-term sequential modelling ability. The \
GTrXL-DQN is composed of three parts: ``encoder``, ``head`` and ``core``. The ``encoder`` is used to extract \
the feature from various observation, the ``core`` is used to process the sequential observation and other \
data, and the ``head`` is used to compute the Q value of each action dimension.
Interfaces:
``__init__``, ``forward``, ``reset_memory``, ``get_memory`` .
"""
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType],
head_layer_num: int = 1,
att_head_dim: int = 16,
hidden_size: int = 16,
att_head_num: int = 2,
att_mlp_num: int = 2,
att_layer_num: int = 3,
memory_len: int = 64,
activation: Optional[nn.Module] = nn.ReLU(),
head_norm_type: Optional[str] = None,
dropout: float = 0.,
gru_gating: bool = True,
gru_bias: float = 2.,
dueling: bool = True,
encoder_hidden_size_list: SequenceType = [128, 128, 256],
encoder_norm_type: Optional[str] = None,
) -> None:
"""
Overview:
Initialize the GTrXLDQN model accoding to corresponding input arguments.
.. tip::
You can refer to GTrXl class in ``ding.torch_utils.network.gtrxl`` for more details about the input \
arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Used by Transformer. Observation's space.
- action_shape (:obj:Union[int, SequenceType]): Used by Head. Action's space.
- head_layer_num (:obj:`int`): Used by Head. Number of layers.
- att_head_dim (:obj:`int`): Used by Transformer.
- hidden_size (:obj:`int`): Used by Transformer and Head.
- att_head_num (:obj:`int`): Used by Transformer.
- att_mlp_num (:obj:`int`): Used by Transformer.
- att_layer_num (:obj:`int`): Used by Transformer.
- memory_len (:obj:`int`): Used by Transformer.
- activation (:obj:`Optional[nn.Module]`): Used by Transformer and Head. if ``None`` then default set to \
``nn.ReLU()``.
- head_norm_type (:obj:`Optional[str]`): Used by Head. The type of normalization to use, see \
``ding.torch_utils.fc_block`` for more details`.
- dropout (:obj:`bool`): Used by Transformer.
- gru_gating (:obj:`bool`): Used by Transformer.
- gru_bias (:obj:`float`): Used by Transformer.
- dueling (:obj:`bool`): Used by Head. Make the head dueling.
- encoder_hidden_size_list(:obj:`SequenceType`): Used by Encoder. The collection of ``hidden_size`` if \
using a custom convolutional encoder.
- encoder_norm_type (:obj:`Optional[str]`): Used by Encoder. The type of normalization to use, see \
``ding.torch_utils.fc_block`` for more details`.
"""
super(GTrXLDQN, self).__init__()
self.core = GTrXL(
input_dim=obs_shape,
head_dim=att_head_dim,
embedding_dim=hidden_size,
head_num=att_head_num,
mlp_num=att_mlp_num,
layer_num=att_layer_num,
memory_len=memory_len,
activation=activation,
dropout_ratio=dropout,
gru_gating=gru_gating,
gru_bias=gru_bias,
)
if isinstance(obs_shape, int) or len(obs_shape) == 1:
raise NotImplementedError("not support obs_shape for pre-defined encoder: {}".format(obs_shape))
# replace the embedding layer of Transformer with Conv Encoder
elif len(obs_shape) == 3:
assert encoder_hidden_size_list[-1] == hidden_size
self.obs_encoder = ConvEncoder(
obs_shape, encoder_hidden_size_list, activation=activation, norm_type=encoder_norm_type
)
self.dropout = nn.Dropout(dropout)
self.core.use_embedding_layer = False
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own GTrXL".format(obs_shape)
)
# Head Type
if dueling:
head_cls = DuelingHead
else:
head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
if multi_head:
self.head = MultiHead(
head_cls,
hidden_size,
action_shape,
layer_num=head_layer_num,
activation=activation,
norm_type=head_norm_type
)
else:
self.head = head_cls(
hidden_size, action_shape, head_layer_num, activation=activation, norm_type=head_norm_type
)
def forward(self, x: torch.Tensor) -> Dict:
"""
Overview:
Let input tensor go through GTrXl and the Head sequentially.
Arguments:
- x (:obj:`torch.Tensor`): input tensor of shape (seq_len, bs, obs_shape).
Returns:
- out (:obj:`Dict`): run ``GTrXL`` with ``DiscreteHead`` setups and return the result prediction dictionary.
ReturnKeys:
- logit (:obj:`torch.Tensor`): discrete Q-value output of each action dimension, shape is (B, action_space).
- memory (:obj:`torch.Tensor`): memory tensor of size ``(bs x layer_num+1 x memory_len x embedding_dim)``.
- transformer_out (:obj:`torch.Tensor`): output tensor of transformer with same size as input ``x``.
Examples:
>>> # Init input's Keys:
>>> obs_dim, seq_len, bs, action_dim = 128, 64, 32, 4
>>> obs = torch.rand(seq_len, bs, obs_dim)
>>> model = GTrXLDQN(obs_dim, action_dim)
>>> outputs = model(obs)
>>> assert isinstance(outputs, dict)
"""
if len(x.shape) == 5:
# 3d obs: cur_seq, bs, ch, h, w
x_ = x.reshape([x.shape[0] * x.shape[1]] + list(x.shape[-3:]))
x_ = self.dropout(self.obs_encoder(x_))
x = x_.reshape(x.shape[0], x.shape[1], -1)
o1 = self.core(x)
out = self.head(o1['logit'])
# layer_num+1 x memory_len x bs embedding_dim -> bs x layer_num+1 x memory_len x embedding_dim
out['memory'] = o1['memory'].permute((2, 0, 1, 3)).contiguous()
out['transformer_out'] = o1['logit'] # output of gtrxl, out['logit'] is final output
return out
def reset_memory(self, batch_size: Optional[int] = None, state: Optional[torch.Tensor] = None) -> None:
"""
Overview:
Clear or reset the memory of GTrXL.
Arguments:
- batch_size (:obj:`Optional[int]`): The number of samples in a training batch.
- state (:obj:`Optional[torch.Tensor]`): The input memory data, whose shape is \
(layer_num, memory_len, bs, embedding_dim).
"""
self.core.reset_memory(batch_size, state)
def get_memory(self) -> Optional[torch.Tensor]:
"""
Overview:
Return the memory of GTrXL.
Returns:
- memory: (:obj:`Optional[torch.Tensor]`): output memory or None if memory has not been initialized, \
whose shape is (layer_num, memory_len, bs, embedding_dim).
"""
return self.core.get_memory()
|