File size: 20,483 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 |
from typing import Union, Dict, Optional
from easydict import EasyDict
import torch
import torch.nn as nn
from copy import deepcopy
from ding.utils import SequenceType, squeeze, MODEL_REGISTRY
from ..common import ReparameterizationHead, RegressionHead, DiscreteHead, MultiHead, \
FCEncoder, ConvEncoder, IMPALAConvEncoder
from ding.torch_utils.network.dreamer import ActionHead, DenseHead
@MODEL_REGISTRY.register('vac')
class VAC(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to (state) Value Actor-Critic (VAC), such as \
A2C/PPO/IMPALA. This model now supports discrete, continuous and hybrid action space. The VAC is composed of \
four parts: ``actor_encoder``, ``critic_encoder``, ``actor_head`` and ``critic_head``. Encoders are used to \
extract the feature from various observation. Heads are used to predict corresponding value or action logit. \
In high-dimensional observation space like 2D image, we often use a shared encoder for both ``actor_encoder`` \
and ``critic_encoder``. In low-dimensional observation space like 1D vector, we often use different encoders.
Interfaces:
``__init__``, ``forward``, ``compute_actor``, ``compute_critic``, ``compute_actor_critic``.
"""
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType, EasyDict],
action_space: str = 'discrete',
share_encoder: bool = True,
encoder_hidden_size_list: SequenceType = [128, 128, 64],
actor_head_hidden_size: int = 64,
actor_head_layer_num: int = 1,
critic_head_hidden_size: int = 64,
critic_head_layer_num: int = 1,
activation: Optional[nn.Module] = nn.ReLU(),
norm_type: Optional[str] = None,
sigma_type: Optional[str] = 'independent',
fixed_sigma_value: Optional[int] = 0.3,
bound_type: Optional[str] = None,
encoder: Optional[torch.nn.Module] = None,
impala_cnn_encoder: bool = False,
) -> None:
"""
Overview:
Initialize the VAC model according to corresponding input arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
- action_space (:obj:`str`): The type of different action spaces, including ['discrete', 'continuous', \
'hybrid'], then will instantiate corresponding head, including ``DiscreteHead``, \
``ReparameterizationHead``, and hybrid heads.
- share_encoder (:obj:`bool`): Whether to share observation encoders between actor and decoder.
- encoder_hidden_size_list (:obj:`SequenceType`): Collection of ``hidden_size`` to pass to ``Encoder``, \
the last element must match ``head_hidden_size``.
- actor_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``actor_head`` network, defaults \
to 64, it must match the last element of ``encoder_hidden_size_list``.
- actor_head_layer_num (:obj:`int`): The num of layers used in the ``actor_head`` network to compute action.
- critic_head_hidden_size (:obj:`Optional[int]`): The ``hidden_size`` of ``critic_head`` network, defaults \
to 64, it must match the last element of ``encoder_hidden_size_list``.
- critic_head_layer_num (:obj:`int`): The num of layers used in the ``critic_head`` network.
- activation (:obj:`Optional[nn.Module]`): The type of activation function in networks \
if ``None`` then default set it to ``nn.ReLU()``.
- norm_type (:obj:`Optional[str]`): The type of normalization in networks, see \
``ding.torch_utils.fc_block`` for more details. you can choose one of ['BN', 'IN', 'SyncBN', 'LN']
- sigma_type (:obj:`Optional[str]`): The type of sigma in continuous action space, see \
``ding.torch_utils.network.dreamer.ReparameterizationHead`` for more details, in A2C/PPO, it defaults \
to ``independent``, which means state-independent sigma parameters.
- fixed_sigma_value (:obj:`Optional[int]`): If ``sigma_type`` is ``fixed``, then use this value as sigma.
- bound_type (:obj:`Optional[str]`): The type of action bound methods in continuous action space, defaults \
to ``None``, which means no bound.
- encoder (:obj:`Optional[torch.nn.Module]`): The encoder module, defaults to ``None``, you can define \
your own encoder module and pass it into VAC to deal with different observation space.
- impala_cnn_encoder (:obj:`bool`): Whether to use IMPALA CNN encoder, defaults to ``False``.
"""
super(VAC, self).__init__()
obs_shape: int = squeeze(obs_shape)
action_shape = squeeze(action_shape)
self.obs_shape, self.action_shape = obs_shape, action_shape
self.impala_cnn_encoder = impala_cnn_encoder
self.share_encoder = share_encoder
# Encoder Type
def new_encoder(outsize, activation):
if impala_cnn_encoder:
return IMPALAConvEncoder(obs_shape=obs_shape, channels=encoder_hidden_size_list, outsize=outsize)
else:
if isinstance(obs_shape, int) or len(obs_shape) == 1:
return FCEncoder(
obs_shape=obs_shape,
hidden_size_list=encoder_hidden_size_list,
activation=activation,
norm_type=norm_type
)
elif len(obs_shape) == 3:
return ConvEncoder(
obs_shape=obs_shape,
hidden_size_list=encoder_hidden_size_list,
activation=activation,
norm_type=norm_type
)
else:
raise RuntimeError(
"not support obs_shape for pre-defined encoder: {}, please customize your own encoder".
format(obs_shape)
)
if self.share_encoder:
assert actor_head_hidden_size == critic_head_hidden_size, \
"actor and critic network head should have same size."
if encoder:
if isinstance(encoder, torch.nn.Module):
self.encoder = encoder
else:
raise ValueError("illegal encoder instance.")
else:
self.encoder = new_encoder(actor_head_hidden_size, activation)
else:
if encoder:
if isinstance(encoder, torch.nn.Module):
self.actor_encoder = encoder
self.critic_encoder = deepcopy(encoder)
else:
raise ValueError("illegal encoder instance.")
else:
self.actor_encoder = new_encoder(actor_head_hidden_size, activation)
self.critic_encoder = new_encoder(critic_head_hidden_size, activation)
# Head Type
self.critic_head = RegressionHead(
critic_head_hidden_size, 1, critic_head_layer_num, activation=activation, norm_type=norm_type
)
self.action_space = action_space
assert self.action_space in ['discrete', 'continuous', 'hybrid'], self.action_space
if self.action_space == 'continuous':
self.multi_head = False
self.actor_head = ReparameterizationHead(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
sigma_type=sigma_type,
activation=activation,
norm_type=norm_type,
bound_type=bound_type
)
elif self.action_space == 'discrete':
actor_head_cls = DiscreteHead
multi_head = not isinstance(action_shape, int)
self.multi_head = multi_head
if multi_head:
self.actor_head = MultiHead(
actor_head_cls,
actor_head_hidden_size,
action_shape,
layer_num=actor_head_layer_num,
activation=activation,
norm_type=norm_type
)
else:
self.actor_head = actor_head_cls(
actor_head_hidden_size,
action_shape,
actor_head_layer_num,
activation=activation,
norm_type=norm_type
)
elif self.action_space == 'hybrid': # HPPO
# hybrid action space: action_type(discrete) + action_args(continuous),
# such as {'action_type_shape': torch.LongTensor([0]), 'action_args_shape': torch.FloatTensor([0.1, -0.27])}
action_shape.action_args_shape = squeeze(action_shape.action_args_shape)
action_shape.action_type_shape = squeeze(action_shape.action_type_shape)
actor_action_args = ReparameterizationHead(
actor_head_hidden_size,
action_shape.action_args_shape,
actor_head_layer_num,
sigma_type=sigma_type,
fixed_sigma_value=fixed_sigma_value,
activation=activation,
norm_type=norm_type,
bound_type=bound_type,
)
actor_action_type = DiscreteHead(
actor_head_hidden_size,
action_shape.action_type_shape,
actor_head_layer_num,
activation=activation,
norm_type=norm_type,
)
self.actor_head = nn.ModuleList([actor_action_type, actor_action_args])
if self.share_encoder:
self.actor = [self.encoder, self.actor_head]
self.critic = [self.encoder, self.critic_head]
else:
self.actor = [self.actor_encoder, self.actor_head]
self.critic = [self.critic_encoder, self.critic_head]
# Convenient for calling some apis (e.g. self.critic.parameters()),
# but may cause misunderstanding when `print(self)`
self.actor = nn.ModuleList(self.actor)
self.critic = nn.ModuleList(self.critic)
def forward(self, x: torch.Tensor, mode: str) -> Dict:
"""
Overview:
VAC forward computation graph, input observation tensor to predict state value or action logit. Different \
``mode`` will forward with different network modules to get different outputs and save computation.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
- mode (:obj:`str`): The forward mode, all the modes are defined in the beginning of this class.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph, whose key-values vary from \
different ``mode``.
Examples (Actor):
>>> model = VAC(64, 128)
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['logit'].shape == torch.Size([4, 128])
Examples (Critic):
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> critic_outputs = model(inputs,'compute_critic')
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64])
Examples (Actor-Critic):
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs,'compute_actor_critic')
>>> assert critic_outputs['value'].shape == torch.Size([4])
>>> assert outputs['logit'].shape == torch.Size([4, 64])
"""
assert mode in self.mode, "not support forward mode: {}/{}".format(mode, self.mode)
return getattr(self, mode)(x)
def compute_actor(self, x: torch.Tensor) -> Dict:
"""
Overview:
VAC forward computation graph for actor part, input observation tensor to predict action logit.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for actor, including ``logit``.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \
the same dimension real-value ranged tensor of possible action choices, and for continuous action \
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \
same as the number of continuous actions. Hybrid action space is a kind of combination of discrete \
and continuous action space, so the logit will be a dict with ``action_type`` and ``action_args``.
Shapes:
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
Examples:
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> actor_outputs = model(inputs,'compute_actor')
>>> assert actor_outputs['logit'].shape == torch.Size([4, 64])
"""
if self.share_encoder:
x = self.encoder(x)
else:
x = self.actor_encoder(x)
if self.action_space == 'discrete':
return self.actor_head(x)
elif self.action_space == 'continuous':
x = self.actor_head(x) # mu, sigma
return {'logit': x}
elif self.action_space == 'hybrid':
action_type = self.actor_head[0](x)
action_args = self.actor_head[1](x)
return {'logit': {'action_type': action_type['logit'], 'action_args': action_args}}
def compute_critic(self, x: torch.Tensor) -> Dict:
"""
Overview:
VAC forward computation graph for critic part, input observation tensor to predict state value.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for critic, including ``value``.
ReturnsKeys:
- value (:obj:`torch.Tensor`): The predicted state value tensor.
Shapes:
- value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size, (B, 1) is squeezed to (B, ).
Examples:
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> critic_outputs = model(inputs,'compute_critic')
>>> assert critic_outputs['value'].shape == torch.Size([4])
"""
if self.share_encoder:
x = self.encoder(x)
else:
x = self.critic_encoder(x)
x = self.critic_head(x)
return {'value': x['pred']}
def compute_actor_critic(self, x: torch.Tensor) -> Dict:
"""
Overview:
VAC forward computation graph for both actor and critic part, input observation tensor to predict action \
logit and state value.
Arguments:
- x (:obj:`torch.Tensor`): The input observation tensor data.
Returns:
- outputs (:obj:`Dict`): The output dict of VAC's forward computation graph for both actor and critic, \
including ``logit`` and ``value``.
ReturnsKeys:
- logit (:obj:`torch.Tensor`): The predicted action logit tensor, for discrete action space, it will be \
the same dimension real-value ranged tensor of possible action choices, and for continuous action \
space, it will be the mu and sigma of the Gaussian distribution, and the number of mu and sigma is the \
same as the number of continuous actions. Hybrid action space is a kind of combination of discrete \
and continuous action space, so the logit will be a dict with ``action_type`` and ``action_args``.
- value (:obj:`torch.Tensor`): The predicted state value tensor.
Shapes:
- logit (:obj:`torch.Tensor`): :math:`(B, N)`, where B is batch size and N is ``action_shape``
- value (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch size, (B, 1) is squeezed to (B, ).
Examples:
>>> model = VAC(64, 64)
>>> inputs = torch.randn(4, 64)
>>> outputs = model(inputs,'compute_actor_critic')
>>> assert critic_outputs['value'].shape == torch.Size([4])
>>> assert outputs['logit'].shape == torch.Size([4, 64])
.. note::
``compute_actor_critic`` interface aims to save computation when shares encoder and return the combination \
dict output.
"""
if self.share_encoder:
actor_embedding = critic_embedding = self.encoder(x)
else:
actor_embedding = self.actor_encoder(x)
critic_embedding = self.critic_encoder(x)
value = self.critic_head(critic_embedding)['pred']
if self.action_space == 'discrete':
logit = self.actor_head(actor_embedding)['logit']
return {'logit': logit, 'value': value}
elif self.action_space == 'continuous':
x = self.actor_head(actor_embedding)
return {'logit': x, 'value': value}
elif self.action_space == 'hybrid':
action_type = self.actor_head[0](actor_embedding)
action_args = self.actor_head[1](actor_embedding)
return {'logit': {'action_type': action_type['logit'], 'action_args': action_args}, 'value': value}
@MODEL_REGISTRY.register('dreamervac')
class DREAMERVAC(nn.Module):
"""
Overview:
The neural network and computation graph of DreamerV3 (state) Value Actor-Critic (VAC).
This model now supports discrete, continuous action space.
Interfaces:
``__init__``, ``forward``.
"""
mode = ['compute_actor', 'compute_critic', 'compute_actor_critic']
def __init__(
self,
obs_shape: Union[int, SequenceType],
action_shape: Union[int, SequenceType, EasyDict],
dyn_stoch=32,
dyn_deter=512,
dyn_discrete=32,
actor_layers=2,
value_layers=2,
units=512,
act='SiLU',
norm='LayerNorm',
actor_dist='normal',
actor_init_std=1.0,
actor_min_std=0.1,
actor_max_std=1.0,
actor_temp=0.1,
action_unimix_ratio=0.01,
) -> None:
"""
Overview:
Initialize the ``DREAMERVAC`` model according to arguments.
Arguments:
- obs_shape (:obj:`Union[int, SequenceType]`): Observation space shape, such as 8 or [4, 84, 84].
- action_shape (:obj:`Union[int, SequenceType]`): Action space shape, such as 6 or [2, 3, 3].
"""
super(DREAMERVAC, self).__init__()
obs_shape: int = squeeze(obs_shape)
action_shape = squeeze(action_shape)
self.obs_shape, self.action_shape = obs_shape, action_shape
if dyn_discrete:
feat_size = dyn_stoch * dyn_discrete + dyn_deter
else:
feat_size = dyn_stoch + dyn_deter
self.actor = ActionHead(
feat_size, # pytorch version
action_shape,
actor_layers,
units,
act,
norm,
actor_dist,
actor_init_std,
actor_min_std,
actor_max_std,
actor_temp,
outscale=1.0,
unimix_ratio=action_unimix_ratio,
)
self.critic = DenseHead(
feat_size, # pytorch version
(255, ),
value_layers,
units,
'SiLU', # act
'LN', # norm
'twohot_symlog',
outscale=0.0,
device='cuda' if torch.cuda.is_available() else 'cpu',
)
|