File size: 26,350 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
import copy
import random
from typing import Union, Tuple, Dict, List
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from easydict import EasyDict
from ding.model import FCEncoder, ConvEncoder
from ding.utils import RunningMeanStd
from ding.utils import SequenceType, REWARD_MODEL_REGISTRY
from .base_reward_model import BaseRewardModel
def collect_data_and_exclude_null_data_rnd(data_in):
res = []
for item in data_in:
if torch.nonzero(torch.tensor(item['null']).float()).shape[0] != 0: # if have null padding in data
# the index of not null data in data_in
# not_null_index = torch.nonzero(torch.tensor(item['null']).float()).squeeze(-1)
null_start_index = int(torch.nonzero(torch.tensor(item['null']).float()).squeeze(-1)[0])
obs = item['obs'][:null_start_index] # exclude the null padding data
else:
obs = item['obs'] # sequence data
res.append(obs)
return res
def collect_data_rnd(data_in):
res = []
is_null_list = []
for item in data_in:
state = item['obs']
is_null = item['null']
res.append(state)
is_null_list.append(is_null)
return res, is_null_list
def collect_data_and_exclude_null_data_episodic(data_in):
obs_list = []
action_list = []
for item in data_in:
if torch.nonzero(torch.tensor(item['null']).float()).shape[0] != 0: # if have null padding in data
# the index of not null data in data_in
# not_null_index = torch.nonzero(torch.tensor(item['null']).float()).squeeze(-1)
null_start_index = int(torch.nonzero(torch.tensor(item['null']).float()).squeeze(-1)[0])
obs = item['obs'][:null_start_index] # sequence data
action = item['action'][:null_start_index] # exclude the null padding data
else:
obs = item['obs'] # sequence data
action = item['action']
obs_list.append(obs)
action_list.append(action)
return obs_list, action_list
def collect_data_episodic(data_in):
res = []
is_null_list = []
for item in data_in:
state = item['obs']
is_null = item['null']
res.append(state)
is_null_list.append(is_null)
return res, is_null_list
class RndNetwork(nn.Module):
def __init__(self, obs_shape: Union[int, SequenceType], hidden_size_list: SequenceType) -> None:
super(RndNetwork, self).__init__()
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.target = FCEncoder(obs_shape, hidden_size_list)
self.predictor = FCEncoder(obs_shape, hidden_size_list)
elif len(obs_shape) == 3:
self.target = ConvEncoder(obs_shape, hidden_size_list)
self.predictor = ConvEncoder(obs_shape, hidden_size_list)
else:
raise KeyError(
"not support obs_shape for pre-defined encoder: {}, "
"please customize your own RND model".format(obs_shape)
)
for param in self.target.parameters():
param.requires_grad = False
def forward(self, obs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
predict_feature = self.predictor(obs)
with torch.no_grad():
target_feature = self.target(obs)
return predict_feature, target_feature
@REWARD_MODEL_REGISTRY.register('rnd-ngu')
class RndNGURewardModel(BaseRewardModel):
r"""
Overview:
inter-episodic/RND reward model for NGU.
The corresponding paper is `never give up: learning directed exploration strategies`.
"""
config = dict(
type='rnd-ngu',
intrinsic_reward_type='add',
learning_rate=1e-3,
batch_size=64,
hidden_size_list=[64, 64, 128],
update_per_collect=100,
)
def __init__(self, config: EasyDict, device: str, tb_logger: 'SummaryWriter') -> None: # noqa
super(RndNGURewardModel, self).__init__()
self.cfg = config
assert device == "cpu" or device.startswith("cuda")
self.device = device
self.tb_logger = tb_logger
self.reward_model = RndNetwork(config.obs_shape, config.hidden_size_list)
self.reward_model.to(self.device)
self.intrinsic_reward_type = config.intrinsic_reward_type
assert self.intrinsic_reward_type in ['add', 'new', 'assign']
self.train_data_total = []
self.train_data = []
self.opt = optim.Adam(self.reward_model.predictor.parameters(), config.learning_rate)
self.estimate_cnt_rnd = 0
self._running_mean_std_rnd = RunningMeanStd(epsilon=1e-4)
self.only_use_last_five_frames = config.only_use_last_five_frames_for_icm_rnd
def _train(self) -> None:
train_data: list = random.sample(list(self.train_data_cur), self.cfg.batch_size)
train_data: torch.Tensor = torch.stack(train_data).to(self.device)
predict_feature, target_feature = self.reward_model(train_data)
loss = F.mse_loss(predict_feature, target_feature.detach())
self.opt.zero_grad()
loss.backward()
self.opt.step()
def train(self) -> None:
if self.only_use_last_five_frames:
# self.train_obs shape list(list) [batch_size,seq_length,N
# stack episode dim
self.train_obs = [torch.stack(episode_obs[-5:], dim=0) for episode_obs in self.train_data_total]
# stack batch dim
# way 1
if isinstance(self.cfg.obs_shape, int):
self.train_data_cur = torch.stack(
self.train_obs, dim=0
).view(len(self.train_obs) * len(self.train_obs[0]), self.cfg.obs_shape)
else: # len(self.cfg.obs_shape) == 3 for image obs
self.train_data_cur = torch.stack(
self.train_obs, dim=0
).view(len(self.train_obs) * self.train_obs[0].shape[0], *self.cfg.obs_shape)
# way 2
# self.train_data_cur = torch.cat(self.train_obs, 0)
else:
self.train_data_cur = sum(self.train_data_total, [])
# another implementation way
# tmp = []
# for i in range(len(self.train_data)):
# tmp += self.train_data[i]
# self.train_data = tmp
for _ in range(self.cfg.update_per_collect):
self._train()
def estimate(self, data: list) -> torch.Tensor:
"""
Rewrite the reward key in each row of the data.
"""
obs, is_null = collect_data_rnd(data)
if isinstance(obs[0], list): # if obs shape list( list(torch.tensor) )
obs = sum(obs, [])
obs = torch.stack(obs).to(self.device)
with torch.no_grad():
predict_feature, target_feature = self.reward_model(obs)
reward = F.mse_loss(predict_feature, target_feature, reduction='none').mean(dim=1)
self._running_mean_std_rnd.update(reward.cpu().numpy())
# transform to mean 1 std 1
reward = 1 + (reward - self._running_mean_std_rnd.mean) / (self._running_mean_std_rnd.std + 1e-11)
self.estimate_cnt_rnd += 1
self.tb_logger.add_scalar('rnd_reward/rnd_reward_max', reward.max(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_mean', reward.mean(), self.estimate_cnt_rnd)
self.tb_logger.add_scalar('rnd_reward/rnd_reward_min', reward.min(), self.estimate_cnt_rnd)
return reward
def collect_data(self, data: list) -> None:
self.train_data_total.extend(collect_data_and_exclude_null_data_rnd(data))
def clear_data(self) -> None:
self.train_data_total.clear()
def reward_deepcopy(self, train_data):
"""
this method deepcopy reward part in train_data, and other parts keep shallow copy
to avoid the reward part of train_data in the replay buffer be incorrectly modified.
"""
train_data_reward_deepcopy = [
{k: copy.deepcopy(v) if k == 'reward' else v
for k, v in sample.items()} for sample in train_data
]
return train_data_reward_deepcopy
class InverseNetwork(nn.Module):
def __init__(self, obs_shape: Union[int, SequenceType], action_shape, hidden_size_list: SequenceType) -> None:
super(InverseNetwork, self).__init__()
if isinstance(obs_shape, int) or len(obs_shape) == 1:
self.embedding_net = FCEncoder(obs_shape, hidden_size_list)
elif len(obs_shape) == 3:
self.embedding_net = ConvEncoder(obs_shape, hidden_size_list)
else:
raise KeyError(
"not support obs_shape for pre-defined encoder: {}, please customize your own RND model".
format(obs_shape)
)
self.inverse_net = nn.Sequential(
nn.Linear(hidden_size_list[-1] * 2, 512), nn.ReLU(inplace=True), nn.Linear(512, action_shape)
)
def forward(self, inputs: Dict, inference: bool = False) -> Dict:
if inference:
with torch.no_grad():
cur_obs_embedding = self.embedding_net(inputs['obs'])
return cur_obs_embedding
else:
# obs: torch.Tensor, next_obs: torch.Tensor
cur_obs_embedding = self.embedding_net(inputs['obs'])
next_obs_embedding = self.embedding_net(inputs['next_obs'])
# get pred action
obs_plus_next_obs = torch.cat([cur_obs_embedding, next_obs_embedding], dim=-1)
pred_action_logits = self.inverse_net(obs_plus_next_obs)
pred_action_probs = nn.Softmax(dim=-1)(pred_action_logits)
return pred_action_logits, pred_action_probs
@REWARD_MODEL_REGISTRY.register('episodic')
class EpisodicNGURewardModel(BaseRewardModel):
r"""
Overview:
Episodic reward model for NGU.
The corresponding paper is `never give up: learning directed exploration strategies`.
"""
config = dict(
type='episodic',
intrinsic_reward_type='add',
learning_rate=1e-3,
batch_size=64,
hidden_size_list=[64, 64, 128],
update_per_collect=100,
# means if using rescale trick to the last non-zero reward
# when combing extrinsic and intrinsic reward.
# the rescale trick only used in:
# 1. sparse reward env minigrid, in which the last non-zero reward is a strong positive signal
# 2. the last reward of each episode directly reflects the agent's completion of the task, e.g. lunarlander
# Note that the ngu intrinsic reward is a positive value (max value is 5), in these envs,
# the last non-zero reward should not be overwhelmed by intrinsic rewards, so we need rescale the
# original last nonzero extrinsic reward.
last_nonzero_reward_rescale=False,
# means the rescale value for the last non-zero reward, only used when last_nonzero_reward_rescale is True
last_nonzero_reward_weight=1,
)
def __init__(self, config: EasyDict, device: str, tb_logger: 'SummaryWriter') -> None: # noqa
super(EpisodicNGURewardModel, self).__init__()
self.cfg = config
assert device == "cpu" or device.startswith("cuda")
self.device = device
self.tb_logger = tb_logger
self.episodic_reward_model = InverseNetwork(config.obs_shape, config.action_shape, config.hidden_size_list)
self.episodic_reward_model.to(self.device)
self.intrinsic_reward_type = config.intrinsic_reward_type
assert self.intrinsic_reward_type in ['add', 'new', 'assign']
self.train_obs_total = []
self.train_action_total = []
self.opt = optim.Adam(self.episodic_reward_model.parameters(), config.learning_rate)
self.estimate_cnt_episodic = 0
self._running_mean_std_episodic_dist = RunningMeanStd(epsilon=1e-4)
self._running_mean_std_episodic_reward = RunningMeanStd(epsilon=1e-4)
self.only_use_last_five_frames = config.only_use_last_five_frames_for_icm_rnd
def _train(self) -> None:
# sample episode's timestep index
train_index = np.random.randint(low=0, high=self.train_obs.shape[0], size=self.cfg.batch_size)
train_obs: torch.Tensor = self.train_obs[train_index].to(self.device) # shape (self.cfg.batch_size, obs_dim)
train_next_obs: torch.Tensor = self.train_next_obs[train_index].to(self.device)
train_action: torch.Tensor = self.train_action[train_index].to(self.device)
train_data = {'obs': train_obs, 'next_obs': train_next_obs}
pred_action_logits, pred_action_probs = self.episodic_reward_model(train_data)
inverse_loss = F.cross_entropy(pred_action_logits, train_action.squeeze(-1))
self.opt.zero_grad()
inverse_loss.backward()
self.opt.step()
def train(self) -> None:
self.train_next_obs_total = copy.deepcopy(self.train_obs_total)
if self.only_use_last_five_frames:
# self.train_obs shape: list(list) [batch_size,seq_length,obs_dim]
self.train_obs = [torch.stack(episode_obs[-6:-1], dim=0) for episode_obs in self.train_obs_total]
self.train_next_obs = [torch.stack(episode_obs[-5:], dim=0) for episode_obs in self.train_next_obs_total]
self.train_action = [
torch.stack(episode_action[-6:-1], dim=0) for episode_action in self.train_action_total
]
else:
self.train_obs = [
torch.stack(episode_obs[:-1], dim=0) for episode_obs in self.train_obs_total if len(episode_obs) > 1
]
self.train_next_obs = [
torch.stack(episode_next_obs[1:], dim=0) for episode_next_obs in self.train_next_obs_total
if len(episode_next_obs) > 1
]
self.train_action = [
torch.stack(episode_action[:-1], dim=0) for episode_action in self.train_action_total
if len(episode_action) > 1
]
# stack batch dim
self.train_obs = torch.cat(self.train_obs, 0)
self.train_next_obs = torch.cat(self.train_next_obs, 0)
self.train_action = torch.cat(self.train_action, 0)
for _ in range(self.cfg.update_per_collect):
self._train()
def _compute_intrinsic_reward(
self,
episodic_memory: List,
current_controllable_state: torch.Tensor,
k=10,
kernel_cluster_distance=0.008,
kernel_epsilon=0.0001,
c=0.001,
siminarity_max=8,
) -> torch.Tensor:
# this function is modified from https://github.com/Coac/never-give-up/blob/main/embedding_model.py
state_dist = torch.cdist(current_controllable_state.unsqueeze(0), episodic_memory, p=2).squeeze(0).sort()[0][:k]
self._running_mean_std_episodic_dist.update(state_dist.cpu().numpy())
state_dist = state_dist / (self._running_mean_std_episodic_dist.mean + 1e-11)
state_dist = torch.clamp(state_dist - kernel_cluster_distance, min=0, max=None)
kernel = kernel_epsilon / (state_dist + kernel_epsilon)
s = torch.sqrt(torch.clamp(torch.sum(kernel), min=0, max=None)) + c
if s > siminarity_max:
print('s > siminarity_max:', s.max(), s.min())
return torch.tensor(0) # NOTE
return 1 / s
# average value 1/( ( 10* 1e-4/(1+1e-4) )**(1/2)+1e-3 ) = 30
def estimate(self, data: list) -> torch.Tensor:
"""
Rewrite the reward key in each row of the data.
"""
obs, is_null = collect_data_episodic(data)
# obs shape list(list()) [batch_size,seq_length,obs_dim]
batch_size = len(obs)
seq_length = len(obs[0])
# stack episode dim
obs = [torch.stack(episode_obs, dim=0) for episode_obs in obs]
# stack batch dim
# way 0
if isinstance(self.cfg.obs_shape, int):
obs = torch.stack(obs, dim=0).view(batch_size * seq_length, self.cfg.obs_shape).to(self.device)
else: # len(self.cfg.obs_shape) == 3 for image obs
obs = torch.stack(obs, dim=0).view(batch_size * seq_length, *self.cfg.obs_shape).to(self.device)
# way 2
# obs = torch.cat(obs, 0)
inputs = {'obs': obs, 'is_null': is_null}
with torch.no_grad():
cur_obs_embedding = self.episodic_reward_model(inputs, inference=True)
cur_obs_embedding = cur_obs_embedding.view(batch_size, seq_length, -1)
episodic_reward = [[] for _ in range(batch_size)]
null_cnt = 0 # the number of null transitions in the whole minibatch
for i in range(batch_size):
for j in range(seq_length):
if j < 10:
# if self._running_mean_std_episodic_reward.mean is not None:
# episodic_reward[i].append(torch.tensor(self._running_mean_std_episodic_reward.mean).to(self.device))
# else:
episodic_reward[i].append(torch.tensor(0.).to(self.device))
elif j:
episodic_memory = cur_obs_embedding[i][:j]
reward = self._compute_intrinsic_reward(episodic_memory,
cur_obs_embedding[i][j]).to(self.device)
episodic_reward[i].append(reward)
if torch.nonzero(torch.tensor(is_null[i]).float()).shape[0] != 0:
# TODO(pu): if have null padding, the episodic_reward should be 0
not_null_index = torch.nonzero(torch.tensor(is_null[i]).float()).squeeze(-1)
null_start_index = int(torch.nonzero(torch.tensor(is_null[i]).float()).squeeze(-1)[0])
# add the number of null transitions in i'th sequence in batch
null_cnt = null_cnt + seq_length - null_start_index
for k in range(null_start_index, seq_length):
episodic_reward[i][k] = torch.tensor(0).to(self.device)
# episodic_reward[i][null_start_index:-1]=[torch.tensor(0).to(self.device)
# for i in range(seq_length-null_start_index)]
# list(list(tensor)) -> tensor
tmp = [torch.stack(episodic_reward_tmp, dim=0) for episodic_reward_tmp in episodic_reward]
# stack batch dim
episodic_reward = torch.stack(tmp, dim=0) # TODO(pu): image case
episodic_reward = episodic_reward.view(-1) # torch.Size([32, 42]) -> torch.Size([32*42]
episodic_reward_real_mean = sum(episodic_reward) / (
batch_size * seq_length - null_cnt
) # TODO(pu): recompute mean
self.estimate_cnt_episodic += 1
self._running_mean_std_episodic_reward.update(episodic_reward.cpu().numpy())
self.tb_logger.add_scalar(
'episodic_reward/episodic_reward_max', episodic_reward.max(), self.estimate_cnt_episodic
)
self.tb_logger.add_scalar(
'episodic_reward/episodic_reward_mean', episodic_reward_real_mean, self.estimate_cnt_episodic
)
self.tb_logger.add_scalar(
'episodic_reward/episodic_reward_min', episodic_reward.min(), self.estimate_cnt_episodic
)
self.tb_logger.add_scalar(
'episodic_reward/episodic_reward_std_', episodic_reward.std(), self.estimate_cnt_episodic
)
# transform to [0,1]: er01
episodic_reward = (episodic_reward -
episodic_reward.min()) / (episodic_reward.max() - episodic_reward.min() + 1e-11)
"""1. transform to batch mean1: erbm1"""
# episodic_reward = episodic_reward / (episodic_reward.mean() + 1e-11)
# the null_padding transition have episodic reward=0,
# episodic_reward = episodic_reward / (episodic_reward_real_mean + 1e-11)
"""2. transform to long-term mean1: erlm1"""
# episodic_reward = episodic_reward / self._running_mean_std_episodic_reward.mean
"""3. transform to mean 0, std 1, which is wrong, rnd_reward is in [1,5], episodic reward should >0,
otherwise, e.g. when the episodic_reward is -2, the rnd_reward larger,
the total intrinsic reward smaller, which is not correct."""
# episodic_reward = (episodic_reward - self._running_mean_std_episodic_reward.mean)
# / self._running_mean_std_episodic_reward.std
"""4. transform to std1, which is not very meaningful"""
# episodic_reward = episodic_reward / self._running_mean_std_episodic_reward.std
return episodic_reward
def collect_data(self, data: list) -> None:
train_obs, train_action = collect_data_and_exclude_null_data_episodic(data)
self.train_obs_total.extend(train_obs)
self.train_action_total.extend(train_action)
def clear_data(self) -> None:
self.train_obs_total = []
self.train_action_total = []
def fusion_reward(
self, train_data, inter_episodic_reward, episodic_reward, nstep, collector_env_num, tb_logger, estimate_cnt
):
# NOTE: deepcopy reward part of train_data is very important,
# otherwise the reward of train_data in the replay buffer will be incorrectly modified.
data = self.reward_deepcopy(train_data)
estimate_cnt += 1
index_to_beta = {
i: 0.3 * torch.sigmoid(torch.tensor(10 * (2 * i - (collector_env_num - 2)) / (collector_env_num - 2)))
for i in range(collector_env_num)
}
batch_size = len(data)
seq_length = len(data[0]['reward'])
device = data[0]['reward'][0].device
intrinsic_reward_type = 'add'
intrisic_reward = episodic_reward * torch.clamp(inter_episodic_reward, min=1, max=5)
tb_logger.add_scalar('intrinsic_reward/intrinsic_reward_max', intrisic_reward.max(), estimate_cnt)
tb_logger.add_scalar('intrinsic_reward/intrinsic_reward_mean', intrisic_reward.mean(), estimate_cnt)
tb_logger.add_scalar('intrinsic_reward/intrinsic_reward_min', intrisic_reward.min(), estimate_cnt)
if not isinstance(data[0], (list, dict)):
# not rnn based rl algorithm
intrisic_reward = intrisic_reward.to(device)
intrisic_reward = torch.chunk(intrisic_reward, intrisic_reward.shape[0], dim=0)
for item, rew in zip(data, intrisic_reward):
if intrinsic_reward_type == 'add':
item['reward'] += rew * index_to_beta[data['beta']]
else:
# rnn based rl algorithm
intrisic_reward = intrisic_reward.to(device)
# tensor to tuple
intrisic_reward = torch.chunk(intrisic_reward, int(intrisic_reward.shape[0]), dim=0)
if self.cfg.last_nonzero_reward_weight is None and self.cfg.last_nonzero_reward_rescale:
# for minigrid env
self.cfg.last_nonzero_reward_weight = seq_length
# this is for the nstep rl algorithms
for i in range(batch_size): # batch_size typically 64
for j in range(seq_length): # burnin+unroll_len is the sequence length, e.g. 100=2+98
if j < seq_length - nstep:
intrinsic_reward = torch.cat(
[intrisic_reward[i * seq_length + j + k] for k in range(nstep)], dim=0
)
# if intrinsic_reward_type == 'add':
if not data[i]['null'][j]:
# if data[i]['null'][j]==True, means its's null data, only the not null data,
# we add a intrinsic_reward
if data[i]['done'][j] and self.cfg.last_nonzero_reward_rescale:
# if not null data, and data[i]['done'][j]==True, so this is the last nstep transition
# in the original data.
# means if using rescale trick to the last non-zero reward
# when combing extrinsic and intrinsic reward.
# only used in sparse reward env minigrid, in which the last non-zero reward
# is a strong positive signal, should not be overwhelmed by intrinsic rewards。
for k in reversed(range(nstep)):
# here we want to find the last nonzero reward in the nstep reward list:
# data[i]['reward'][j], that is also the last reward in the sequence, here,
# we set the sequence length is large enough,
# so we can consider the sequence as the whole episode plus null_padding
# TODO(pu): what should we do if the last reward in the whole episode is zero?
if data[i]['reward'][j][k] != 0:
# find the last one that is nonzero, and enlarging <seq_length> times
last_nonzero_rew = copy.deepcopy(data[i]['reward'][j][k])
data[i]['reward'][j][k] = \
self.cfg.last_nonzero_reward_weight * last_nonzero_rew + \
intrinsic_reward[k] * index_to_beta[int(data[i]['beta'][j])]
# substitute the kth reward in the list data[i]['reward'][j] with <seq_length>
# times amplified reward
break
else:
data[i]['reward'][j] = data[i]['reward'][j] + intrinsic_reward * index_to_beta[
int(data[i]['beta'][j])]
return data, estimate_cnt
|