File size: 10,252 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from typing import List, Dict
from ditk import logging
import numpy as np
import torch
import pickle
try:
    from sklearn.svm import SVC
except ImportError:
    SVC = None
from ding.torch_utils import cov
from ding.utils import REWARD_MODEL_REGISTRY, one_time_warning
from .base_reward_model import BaseRewardModel


@REWARD_MODEL_REGISTRY.register('pdeil')
class PdeilRewardModel(BaseRewardModel):
    """
    Overview:
        The Pdeil reward model class (https://arxiv.org/abs/2112.06746)
    Interface:
        ``estimate``, ``train``, ``load_expert_data``, ``collect_data``, ``clear_date``, \
            ``__init__``, ``_train``, ``_batch_mn_pdf``
    Config:
        == ====================  =====   =============  =======================================  =======================
        ID Symbol                Type    Default Value  Description                              Other(Shape)
        == ====================  =====   =============  =======================================  =======================
        1  ``type``              str       pdeil        | Reward model register name, refer      |
                                                        | to registry ``REWARD_MODEL_REGISTRY``  |
        2  | ``expert_data_``    str     expert_data.   | Path to the expert dataset             | Should be a '.pkl'
           | ``path``                    .pkl           |                                        | file
        3  | ``discrete_``       bool      False        | Whether the action is discrete         |
           | ``action``                                 |                                        |
        4  | ``alpha``           float     0.5          | coefficient for Probability            |
           |                                            | Density Estimator                      |
        5  | ``clear_buffer``    int      1             | clear buffer per fixed iters           | make sure replay
            ``_per_iters``                                                                       | buffer's data count
                                                                                                 | isn't too few.
                                                                                                 | (code work in entry)
        == ====================  =====   =============  =======================================  =======================
    """
    config = dict(
        # (str) Reward model register name, refer to registry ``REWARD_MODEL_REGISTRY``.
        type='pdeil',
        # (str) Path to the expert dataset.
        # expert_data_path='expert_data.pkl',
        # (bool) Whether the action is discrete.
        discrete_action=False,
        # (float) Coefficient for Probability Density Estimator.
        # alpha + beta = 1, alpha is in [0,1]
        # when alpha is close to 0, the estimator has high variance and low bias;
        # when alpha is close to 1, the estimator has high bias and low variance.
        alpha=0.5,
        # (int) Clear buffer per fixed iters.
        clear_buffer_per_iters=1,
    )

    def __init__(self, cfg: dict, device, tb_logger: 'SummaryWriter') -> None:  # noqa
        """
        Overview:
            Initialize ``self.`` See ``help(type(self))`` for accurate signature.
            Some rules in naming the attributes of ``self.``:

                - ``e_`` : expert values
                - ``_sigma_`` : standard division values
                - ``p_`` : current policy values
                - ``_s_`` : states
                - ``_a_`` : actions
        Arguments:
            - cfg (:obj:`Dict`): Training config
            - device (:obj:`str`): Device usage, i.e. "cpu" or "cuda"
            - tb_logger (:obj:`str`): Logger, defaultly set as 'SummaryWriter' for model summary
        """
        super(PdeilRewardModel, self).__init__()
        try:
            import scipy.stats as stats
            self.stats = stats
        except ImportError:
            import sys
            logging.warning("Please install scipy first, such as `pip3 install scipy`.")
            sys.exit(1)
        self.cfg: dict = cfg
        self.e_u_s = None
        self.e_sigma_s = None
        if cfg.discrete_action:
            self.svm = None
        else:
            self.e_u_s_a = None
            self.e_sigma_s_a = None
        self.p_u_s = None
        self.p_sigma_s = None
        self.expert_data = None
        self.train_data: list = []
        assert device in ["cpu", "cuda"] or "cuda" in device
        # pedil default use cpu device
        self.device = 'cpu'

        self.load_expert_data()
        states: list = []
        actions: list = []
        for item in self.expert_data:
            states.append(item['obs'])
            actions.append(item['action'])
        states: torch.Tensor = torch.stack(states, dim=0)
        actions: torch.Tensor = torch.stack(actions, dim=0)
        self.e_u_s: torch.Tensor = torch.mean(states, axis=0)
        self.e_sigma_s: torch.Tensor = cov(states, rowvar=False)
        if self.cfg.discrete_action and SVC is None:
            one_time_warning("You are using discrete action while the SVC is not installed!")
        if self.cfg.discrete_action and SVC is not None:
            self.svm: SVC = SVC(probability=True)
            self.svm.fit(states.cpu().numpy(), actions.cpu().numpy())
        else:
            # states action conjuct
            state_actions = torch.cat((states, actions.float()), dim=-1)
            self.e_u_s_a = torch.mean(state_actions, axis=0)
            self.e_sigma_s_a = cov(state_actions, rowvar=False)

    def load_expert_data(self) -> None:
        """
        Overview:
            Getting the expert data from ``config['expert_data_path']`` attribute in self.
        Effects:
            This is a side effect function which updates the expert data attribute (e.g.  ``self.expert_data``)
        """
        expert_data_path: str = self.cfg.expert_data_path
        with open(expert_data_path, 'rb') as f:
            self.expert_data: list = pickle.load(f)

    def _train(self, states: torch.Tensor) -> None:
        """
        Overview:
            Helper function for ``train`` which caclulates loss for train data and expert data.
        Arguments:
            - states (:obj:`torch.Tensor`): current policy states
        Effects:
            - Update attributes of ``p_u_s`` and ``p_sigma_s``
        """
        # we only need to collect the current policy state
        self.p_u_s = torch.mean(states, axis=0)
        self.p_sigma_s = cov(states, rowvar=False)

    def train(self):
        """
        Overview:
            Training the Pdeil reward model.
        """
        states = torch.stack([item['obs'] for item in self.train_data], dim=0)
        self._train(states)

    def _batch_mn_pdf(self, x: np.ndarray, mean: np.ndarray, cov: np.ndarray) -> np.ndarray:
        """
        Overview:
           Get multivariate normal pdf of given np array.
        """
        return np.asarray(
            self.stats.multivariate_normal.pdf(x, mean=mean, cov=cov, allow_singular=False), dtype=np.float32
        )

    def estimate(self, data: list) -> List[Dict]:
        """
        Overview:
            Estimate reward by rewriting the reward keys.
        Arguments:
            - data (:obj:`list`): the list of data used for estimation,\
                 with at least ``obs`` and ``action`` keys.
        Effects:
            - This is a side effect function which updates the reward values in place.
        """
        # NOTE: deepcopy reward part of data is very important,
        # otherwise the reward of data in the replay buffer will be incorrectly modified.
        train_data_augmented = self.reward_deepcopy(data)
        s = torch.stack([item['obs'] for item in train_data_augmented], dim=0)
        a = torch.stack([item['action'] for item in train_data_augmented], dim=0)
        if self.p_u_s is None:
            print("you need to train you reward model first")
            for item in train_data_augmented:
                item['reward'].zero_()
        else:
            rho_1 = self._batch_mn_pdf(s.cpu().numpy(), self.e_u_s.cpu().numpy(), self.e_sigma_s.cpu().numpy())
            rho_1 = torch.from_numpy(rho_1)
            rho_2 = self._batch_mn_pdf(s.cpu().numpy(), self.p_u_s.cpu().numpy(), self.p_sigma_s.cpu().numpy())
            rho_2 = torch.from_numpy(rho_2)
            if self.cfg.discrete_action:
                rho_3 = self.svm.predict_proba(s.cpu().numpy())[a.cpu().numpy()]
                rho_3 = torch.from_numpy(rho_3)
            else:
                s_a = torch.cat([s, a.float()], dim=-1)
                rho_3 = self._batch_mn_pdf(
                    s_a.cpu().numpy(),
                    self.e_u_s_a.cpu().numpy(),
                    self.e_sigma_s_a.cpu().numpy()
                )
                rho_3 = torch.from_numpy(rho_3)
                rho_3 = rho_3 / rho_1
            alpha = self.cfg.alpha
            beta = 1 - alpha
            den = rho_1 * rho_3
            frac = alpha * rho_1 + beta * rho_2
            if frac.abs().max() < 1e-4:
                for item in train_data_augmented:
                    item['reward'].zero_()
            else:
                reward = den / frac
                reward = torch.chunk(reward, reward.shape[0], dim=0)
                for item, rew in zip(train_data_augmented, reward):
                    item['reward'] = rew
        return train_data_augmented

    def collect_data(self, item: list):
        """
        Overview:
            Collecting training data by iterating data items in the input list
        Arguments:
            - data (:obj:`list`): Raw training data (e.g. some form of states, actions, obs, etc)
        Effects:
            - This is a side effect function which updates the data attribute in ``self`` by \
                iterating data items in the input data items' list
        """
        self.train_data.extend(item)

    def clear_data(self):
        """
        Overview:
            Clearing training data. \
            This is a side effect function which clears the data attribute in ``self``
        """
        self.train_data.clear()