File size: 1,539 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import pytest
import torch
from ding.rl_utils import get_epsilon_greedy_fn, create_noise_generator
@pytest.mark.unittest
def test_eps_greedy():
exp_eps = get_epsilon_greedy_fn(start=0.9, end=0.1, decay=100)
assert exp_eps(0) == 0.9
assert exp_eps(10) > exp_eps(200)
lin_eps1 = get_epsilon_greedy_fn(start=1.0, end=0.1, decay=90, type_='linear')
assert lin_eps1(9) == 0.91
assert lin_eps1(100) == 0.1
lin_eps2 = get_epsilon_greedy_fn(start=0.9, end=0.3, decay=20, type_='linear')
assert pytest.approx(lin_eps2(9)) == 0.63
assert lin_eps2(100) == 0.3
@pytest.mark.unittest
def test_noise():
bs, dim = 4, 15
logits = torch.Tensor(bs, dim)
gauss = create_noise_generator(noise_type='gauss', noise_kwargs={'mu': 0.0, 'sigma': 1.5})
g_noise = gauss(logits.shape, logits.device)
assert g_noise.shape == logits.shape
assert g_noise.device == logits.device
x0 = torch.rand(bs, dim)
ou = create_noise_generator(noise_type='ou', noise_kwargs={'mu': 0.1, 'sigma': 1.0, 'theta': 2.0, 'x0': x0})
o_noise1 = ou((bs, dim), x0.device)
o_noise2 = ou((bs, dim), x0.device)
assert o_noise2.shape == x0.shape
assert o_noise2.device == x0.device
assert not torch.equal(ou.x0, ou._x) # OUNoise._x is not the same as _x0 after 2 calls
assert torch.abs(x0 - ou.x0).max() < 1e-6 # OUNoise._x0 does not change
x0 += 0.05
ou.x0 = x0
assert torch.abs(ou.x0 - x0).max() < 1e-6 and torch.abs(ou.x0 - ou._x).max() < 1e-6
o_noise3 = ou(x0.shape, x0.device)
|