File size: 22,715 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
from functools import partial
from ditk import logging
import itertools
import copy
import numpy as np
import multiprocessing
import torch
import torch.nn as nn
from ding.utils import WORLD_MODEL_REGISTRY
from ding.utils.data import default_collate
from ding.torch_utils import unsqueeze_repeat
from ding.world_model.base_world_model import HybridWorldModel
from ding.world_model.model.ensemble import EnsembleModel, StandardScaler
#======================= Helper functions =======================
# tree_query = lambda datapoint: tree.query(datapoint, k=k+1)[1][1:]
def tree_query(datapoint, tree, k):
return tree.query(datapoint, k=k + 1)[1][1:]
def get_neighbor_index(data, k, serial=False):
"""
data: [B, N]
k: int
ret: [B, k]
"""
try:
from scipy.spatial import KDTree
except ImportError:
import sys
logging.warning("Please install scipy first, such as `pip3 install scipy`.")
sys.exit(1)
data = data.cpu().numpy()
tree = KDTree(data)
if serial:
nn_index = [torch.from_numpy(np.array(tree_query(d, tree, k))) for d in data]
nn_index = torch.stack(nn_index).long()
else:
# TODO: speed up multiprocessing
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
fn = partial(tree_query, tree=tree, k=k)
nn_index = torch.from_numpy(np.array(list(pool.map(fn, data)), dtype=np.int32)).to(torch.long)
pool.close()
return nn_index
def get_batch_jacobian(net, x, noutputs): # x: b, in dim, noutpouts: out dim
x = x.unsqueeze(1) # b, 1 ,in_dim
n = x.size()[0]
x = x.repeat(1, noutputs, 1) # b, out_dim, in_dim
x.requires_grad_(True)
y = net(x)
upstream_gradient = torch.eye(noutputs).reshape(1, noutputs, noutputs).repeat(n, 1, 1).to(x.device)
re = torch.autograd.grad(y, x, upstream_gradient, create_graph=True)[0]
return re
class EnsembleGradientModel(EnsembleModel):
def train(self, loss, loss_reg, reg):
self.optimizer.zero_grad()
loss += 0.01 * torch.sum(self.max_logvar) - 0.01 * torch.sum(self.min_logvar)
loss += reg * loss_reg
if self.use_decay:
loss += self.get_decay_loss()
loss.backward()
self.optimizer.step()
# TODO: derive from MBPO instead of implementing from scratch
@WORLD_MODEL_REGISTRY.register('ddppo')
class DDPPOWorldMode(HybridWorldModel, nn.Module):
"""rollout model + gradient model"""
config = dict(
model=dict(
ensemble_size=7,
elite_size=5,
state_size=None, # has to be specified
action_size=None, # has to be specified
reward_size=1,
hidden_size=200,
use_decay=False,
batch_size=256,
holdout_ratio=0.2,
max_epochs_since_update=5,
deterministic_rollout=True,
# parameters for DDPPO
gradient_model=True,
k=3,
reg=1,
neighbor_pool_size=10000,
train_freq_gradient_model=250
),
)
def __init__(self, cfg, env, tb_logger):
HybridWorldModel.__init__(self, cfg, env, tb_logger)
nn.Module.__init__(self)
cfg = cfg.model
self.ensemble_size = cfg.ensemble_size
self.elite_size = cfg.elite_size
self.state_size = cfg.state_size
self.action_size = cfg.action_size
self.reward_size = cfg.reward_size
self.hidden_size = cfg.hidden_size
self.use_decay = cfg.use_decay
self.batch_size = cfg.batch_size
self.holdout_ratio = cfg.holdout_ratio
self.max_epochs_since_update = cfg.max_epochs_since_update
self.deterministic_rollout = cfg.deterministic_rollout
# parameters for DDPPO
self.gradient_model = cfg.gradient_model
self.k = cfg.k
self.reg = cfg.reg
self.neighbor_pool_size = cfg.neighbor_pool_size
self.train_freq_gradient_model = cfg.train_freq_gradient_model
self.rollout_model = EnsembleModel(
self.state_size,
self.action_size,
self.reward_size,
self.ensemble_size,
self.hidden_size,
use_decay=self.use_decay
)
self.scaler = StandardScaler(self.state_size + self.action_size)
self.ensemble_mse_losses = []
self.model_variances = []
self.elite_model_idxes = []
if self.gradient_model:
self.gradient_model = EnsembleGradientModel(
self.state_size,
self.action_size,
self.reward_size,
self.ensemble_size,
self.hidden_size,
use_decay=self.use_decay
)
self.elite_model_idxes_gradient_model = []
self.last_train_step_gradient_model = 0
self.serial_calc_nn = False
if self._cuda:
self.cuda()
def step(self, obs, act, batch_size=8192):
class Predict(torch.autograd.Function):
# TODO: align rollout_model elites with gradient_model elites
# use different model for forward and backward
@staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
mean, var = self.rollout_model(x, ret_log_var=False)
return torch.cat([mean, var], dim=-1)
@staticmethod
def backward(ctx, grad_out):
x, = ctx.saved_tensors
with torch.enable_grad():
x = x.detach()
x.requires_grad_(True)
mean, var = self.gradient_model(x, ret_log_var=False)
y = torch.cat([mean, var], dim=-1)
return torch.autograd.grad(y, x, grad_outputs=grad_out, create_graph=True)
if len(act.shape) == 1:
act = act.unsqueeze(1)
if self._cuda:
obs = obs.cuda()
act = act.cuda()
inputs = torch.cat([obs, act], dim=1)
inputs = self.scaler.transform(inputs)
# predict
ensemble_mean, ensemble_var = [], []
for i in range(0, inputs.shape[0], batch_size):
input = unsqueeze_repeat(inputs[i:i + batch_size], self.ensemble_size)
if not torch.is_grad_enabled() or not self.gradient_model:
b_mean, b_var = self.rollout_model(input, ret_log_var=False)
else:
# use gradient model to compute gradients during backward pass
output = Predict.apply(input)
b_mean, b_var = output.chunk(2, dim=2)
ensemble_mean.append(b_mean)
ensemble_var.append(b_var)
ensemble_mean = torch.cat(ensemble_mean, 1)
ensemble_var = torch.cat(ensemble_var, 1)
ensemble_mean[:, :, 1:] += obs.unsqueeze(0)
ensemble_std = ensemble_var.sqrt()
# sample from the predicted distribution
if self.deterministic_rollout:
ensemble_sample = ensemble_mean
else:
ensemble_sample = ensemble_mean + torch.randn_like(ensemble_mean).to(ensemble_mean) * ensemble_std
# sample from ensemble
model_idxes = torch.from_numpy(np.random.choice(self.elite_model_idxes, size=len(obs))).to(inputs.device)
batch_idxes = torch.arange(len(obs)).to(inputs.device)
sample = ensemble_sample[model_idxes, batch_idxes]
rewards, next_obs = sample[:, 0], sample[:, 1:]
return rewards, next_obs, self.env.termination_fn(next_obs)
def eval(self, env_buffer, envstep, train_iter):
data = env_buffer.sample(self.eval_freq, train_iter)
data = default_collate(data)
data['done'] = data['done'].float()
data['weight'] = data.get('weight', None)
obs = data['obs']
action = data['action']
reward = data['reward']
next_obs = data['next_obs']
if len(reward.shape) == 1:
reward = reward.unsqueeze(1)
if len(action.shape) == 1:
action = action.unsqueeze(1)
# build eval samples
inputs = torch.cat([obs, action], dim=1)
labels = torch.cat([reward, next_obs - obs], dim=1)
if self._cuda:
inputs = inputs.cuda()
labels = labels.cuda()
# normalize
inputs = self.scaler.transform(inputs)
# repeat for ensemble
inputs = unsqueeze_repeat(inputs, self.ensemble_size)
labels = unsqueeze_repeat(labels, self.ensemble_size)
# eval
with torch.no_grad():
mean, logvar = self.rollout_model(inputs, ret_log_var=True)
loss, mse_loss = self.rollout_model.loss(mean, logvar, labels)
ensemble_mse_loss = torch.pow(mean.mean(0) - labels[0], 2)
model_variance = mean.var(0)
self.tb_logger.add_scalar('env_model_step/eval_mse_loss', mse_loss.mean().item(), envstep)
self.tb_logger.add_scalar('env_model_step/eval_ensemble_mse_loss', ensemble_mse_loss.mean().item(), envstep)
self.tb_logger.add_scalar('env_model_step/eval_model_variances', model_variance.mean().item(), envstep)
self.last_eval_step = envstep
def train(self, env_buffer, envstep, train_iter):
def train_sample(data) -> tuple:
data = default_collate(data)
data['done'] = data['done'].float()
data['weight'] = data.get('weight', None)
obs = data['obs']
action = data['action']
reward = data['reward']
next_obs = data['next_obs']
if len(reward.shape) == 1:
reward = reward.unsqueeze(1)
if len(action.shape) == 1:
action = action.unsqueeze(1)
# build train samples
inputs = torch.cat([obs, action], dim=1)
labels = torch.cat([reward, next_obs - obs], dim=1)
if self._cuda:
inputs = inputs.cuda()
labels = labels.cuda()
return inputs, labels
logvar = dict()
data = env_buffer.sample(env_buffer.count(), train_iter)
inputs, labels = train_sample(data)
logvar.update(self._train_rollout_model(inputs, labels))
if self.gradient_model:
# update neighbor pool
if (envstep - self.last_train_step_gradient_model) >= self.train_freq_gradient_model:
n = min(env_buffer.count(), self.neighbor_pool_size)
self.neighbor_pool = env_buffer.sample(n, train_iter, sample_range=slice(-n, None))
inputs_reg, labels_reg = train_sample(self.neighbor_pool)
logvar.update(self._train_gradient_model(inputs, labels, inputs_reg, labels_reg))
self.last_train_step_gradient_model = envstep
self.last_train_step = envstep
# log
if self.tb_logger is not None:
for k, v in logvar.items():
self.tb_logger.add_scalar('env_model_step/' + k, v, envstep)
def _train_rollout_model(self, inputs, labels):
#split
num_holdout = int(inputs.shape[0] * self.holdout_ratio)
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:]
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout]
#normalize
self.scaler.fit(train_inputs)
train_inputs = self.scaler.transform(train_inputs)
holdout_inputs = self.scaler.transform(holdout_inputs)
#repeat for ensemble
holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size)
holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size)
self._epochs_since_update = 0
self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)}
self._save_states()
for epoch in itertools.count():
train_idx = torch.stack([torch.randperm(train_inputs.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs.device)
self.mse_loss = []
for start_pos in range(0, train_inputs.shape[0], self.batch_size):
idx = train_idx[:, start_pos:start_pos + self.batch_size]
train_input = train_inputs[idx]
train_label = train_labels[idx]
mean, logvar = self.rollout_model(train_input, ret_log_var=True)
loss, mse_loss = self.rollout_model.loss(mean, logvar, train_label)
self.rollout_model.train(loss)
self.mse_loss.append(mse_loss.mean().item())
self.mse_loss = sum(self.mse_loss) / len(self.mse_loss)
with torch.no_grad():
holdout_mean, holdout_logvar = self.rollout_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.rollout_model.loss(holdout_mean, holdout_logvar, holdout_labels)
self.curr_holdout_mse_loss = holdout_mse_loss.mean().item()
break_train = self._save_best(epoch, holdout_mse_loss)
if break_train:
break
self._load_states()
with torch.no_grad():
holdout_mean, holdout_logvar = self.rollout_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.rollout_model.loss(holdout_mean, holdout_logvar, holdout_labels)
sorted_loss, sorted_loss_idx = holdout_mse_loss.sort()
sorted_loss = sorted_loss.detach().cpu().numpy().tolist()
sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist()
self.elite_model_idxes = sorted_loss_idx[:self.elite_size]
self.top_holdout_mse_loss = sorted_loss[0]
self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2]
self.bottom_holdout_mse_loss = sorted_loss[-1]
self.best_holdout_mse_loss = holdout_mse_loss.mean().item()
return {
'rollout_model/mse_loss': self.mse_loss,
'rollout_model/curr_holdout_mse_loss': self.curr_holdout_mse_loss,
'rollout_model/best_holdout_mse_loss': self.best_holdout_mse_loss,
'rollout_model/top_holdout_mse_loss': self.top_holdout_mse_loss,
'rollout_model/middle_holdout_mse_loss': self.middle_holdout_mse_loss,
'rollout_model/bottom_holdout_mse_loss': self.bottom_holdout_mse_loss,
}
def _get_jacobian(self, model, train_input_reg):
"""
train_input_reg: [ensemble_size, B, state_size+action_size]
ret: [ensemble_size, B, state_size+reward_size, state_size+action_size]
"""
def func(x):
x = x.view(self.ensemble_size, -1, self.state_size + self.action_size)
state = x[:, :, :self.state_size]
x = self.scaler.transform(x)
y, _ = model(x)
# y[:, :, self.reward_size:] += state, inplace operation leads to error
null = torch.zeros_like(y)
null[:, :, self.reward_size:] += state
y = y + null
return y.view(-1, self.state_size + self.reward_size, self.state_size + self.reward_size)
# reshape input
train_input_reg = train_input_reg.view(-1, self.state_size + self.action_size)
jacobian = get_batch_jacobian(func, train_input_reg, self.state_size + self.reward_size)
# reshape jacobian
return jacobian.view(
self.ensemble_size, -1, self.state_size + self.reward_size, self.state_size + self.action_size
)
def _train_gradient_model(self, inputs, labels, inputs_reg, labels_reg):
#split
num_holdout = int(inputs.shape[0] * self.holdout_ratio)
train_inputs, train_labels = inputs[num_holdout:], labels[num_holdout:]
holdout_inputs, holdout_labels = inputs[:num_holdout], labels[:num_holdout]
#normalize
# self.scaler.fit(train_inputs)
train_inputs = self.scaler.transform(train_inputs)
holdout_inputs = self.scaler.transform(holdout_inputs)
#repeat for ensemble
holdout_inputs = unsqueeze_repeat(holdout_inputs, self.ensemble_size)
holdout_labels = unsqueeze_repeat(holdout_labels, self.ensemble_size)
#no split and normalization on regulation data
train_inputs_reg, train_labels_reg = inputs_reg, labels_reg
neighbor_index = get_neighbor_index(train_inputs_reg, self.k, serial=self.serial_calc_nn)
neighbor_inputs = train_inputs_reg[neighbor_index] # [N, k, state_size+action_size]
neighbor_labels = train_labels_reg[neighbor_index] # [N, k, state_size+reward_size]
neighbor_inputs_distance = (neighbor_inputs - train_inputs_reg.unsqueeze(1)) # [N, k, state_size+action_size]
neighbor_labels_distance = (neighbor_labels - train_labels_reg.unsqueeze(1)) # [N, k, state_size+reward_size]
self._epochs_since_update = 0
self._snapshots = {i: (-1, 1e10) for i in range(self.ensemble_size)}
self._save_states()
for epoch in itertools.count():
train_idx = torch.stack([torch.randperm(train_inputs.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs.device)
train_idx_reg = torch.stack([torch.randperm(train_inputs_reg.shape[0])
for _ in range(self.ensemble_size)]).to(train_inputs_reg.device)
self.mse_loss = []
self.grad_loss = []
for start_pos in range(0, train_inputs.shape[0], self.batch_size):
idx = train_idx[:, start_pos:start_pos + self.batch_size]
train_input = train_inputs[idx]
train_label = train_labels[idx]
mean, logvar = self.gradient_model(train_input, ret_log_var=True)
loss, mse_loss = self.gradient_model.loss(mean, logvar, train_label)
# regulation loss
if start_pos % train_inputs_reg.shape[0] < (start_pos + self.batch_size) % train_inputs_reg.shape[0]:
idx_reg = train_idx_reg[:, start_pos % train_inputs_reg.shape[0]:(start_pos + self.batch_size) %
train_inputs_reg.shape[0]]
else:
idx_reg = train_idx_reg[:, 0:(start_pos + self.batch_size) % train_inputs_reg.shape[0]]
train_input_reg = train_inputs_reg[idx_reg]
neighbor_input_distance = neighbor_inputs_distance[idx_reg
] # [ensemble_size, B, k, state_size+action_size]
neighbor_label_distance = neighbor_labels_distance[idx_reg
] # [ensemble_size, B, k, state_size+reward_size]
jacobian = self._get_jacobian(self.gradient_model, train_input_reg).unsqueeze(2).repeat_interleave(
self.k, dim=2
) # [ensemble_size, B, k(repeat), state_size+reward_size, state_size+action_size]
directional_derivative = (jacobian @ neighbor_input_distance.unsqueeze(-1)).squeeze(
-1
) # [ensemble_size, B, k, state_size+reward_size]
loss_reg = torch.pow((neighbor_label_distance - directional_derivative),
2).sum(0).mean() # sumed over network
self.gradient_model.train(loss, loss_reg, self.reg)
self.mse_loss.append(mse_loss.mean().item())
self.grad_loss.append(loss_reg.item())
self.mse_loss = sum(self.mse_loss) / len(self.mse_loss)
self.grad_loss = sum(self.grad_loss) / len(self.grad_loss)
with torch.no_grad():
holdout_mean, holdout_logvar = self.gradient_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.gradient_model.loss(holdout_mean, holdout_logvar, holdout_labels)
self.curr_holdout_mse_loss = holdout_mse_loss.mean().item()
break_train = self._save_best(epoch, holdout_mse_loss)
if break_train:
break
self._load_states()
with torch.no_grad():
holdout_mean, holdout_logvar = self.gradient_model(holdout_inputs, ret_log_var=True)
_, holdout_mse_loss = self.gradient_model.loss(holdout_mean, holdout_logvar, holdout_labels)
sorted_loss, sorted_loss_idx = holdout_mse_loss.sort()
sorted_loss = sorted_loss.detach().cpu().numpy().tolist()
sorted_loss_idx = sorted_loss_idx.detach().cpu().numpy().tolist()
self.elite_model_idxes_gradient_model = sorted_loss_idx[:self.elite_size]
self.top_holdout_mse_loss = sorted_loss[0]
self.middle_holdout_mse_loss = sorted_loss[self.ensemble_size // 2]
self.bottom_holdout_mse_loss = sorted_loss[-1]
self.best_holdout_mse_loss = holdout_mse_loss.mean().item()
return {
'gradient_model/mse_loss': self.mse_loss,
'gradient_model/grad_loss': self.grad_loss,
'gradient_model/curr_holdout_mse_loss': self.curr_holdout_mse_loss,
'gradient_model/best_holdout_mse_loss': self.best_holdout_mse_loss,
'gradient_model/top_holdout_mse_loss': self.top_holdout_mse_loss,
'gradient_model/middle_holdout_mse_loss': self.middle_holdout_mse_loss,
'gradient_model/bottom_holdout_mse_loss': self.bottom_holdout_mse_loss,
}
def _save_states(self, ):
self._states = copy.deepcopy(self.state_dict())
def _save_state(self, id):
state_dict = self.state_dict()
for k, v in state_dict.items():
if 'weight' in k or 'bias' in k:
self._states[k].data[id] = copy.deepcopy(v.data[id])
def _load_states(self):
self.load_state_dict(self._states)
def _save_best(self, epoch, holdout_losses):
updated = False
for i in range(len(holdout_losses)):
current = holdout_losses[i]
_, best = self._snapshots[i]
improvement = (best - current) / best
if improvement > 0.01:
self._snapshots[i] = (epoch, current)
self._save_state(i)
# self._save_state(i)
updated = True
# improvement = (best - current) / best
if updated:
self._epochs_since_update = 0
else:
self._epochs_since_update += 1
return self._epochs_since_update > self.max_epochs_since_update
|