File size: 10,142 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import copy
import torch
from torch import nn

from ding.utils import WORLD_MODEL_REGISTRY, lists_to_dicts
from ding.utils.data import default_collate
from ding.model import ConvEncoder
from ding.world_model.base_world_model import WorldModel
from ding.world_model.model.networks import RSSM, ConvDecoder
from ding.torch_utils import to_device
from ding.torch_utils.network.dreamer import DenseHead


@WORLD_MODEL_REGISTRY.register('dreamer')
class DREAMERWorldModel(WorldModel, nn.Module):
    config = dict(
        pretrain=100,
        train_freq=2,
        model=dict(
            state_size=None,
            action_size=None,
            model_lr=1e-4,
            reward_size=1,
            hidden_size=200,
            batch_size=256,
            max_epochs_since_update=5,
            dyn_stoch=32,
            dyn_deter=512,
            dyn_hidden=512,
            dyn_input_layers=1,
            dyn_output_layers=1,
            dyn_rec_depth=1,
            dyn_shared=False,
            dyn_discrete=32,
            act='SiLU',
            norm='LayerNorm',
            grad_heads=['image', 'reward', 'discount'],
            units=512,
            reward_layers=2,
            discount_layers=2,
            value_layers=2,
            actor_layers=2,
            cnn_depth=32,
            encoder_kernels=[4, 4, 4, 4],
            decoder_kernels=[4, 4, 4, 4],
            reward_head='twohot_symlog',
            kl_lscale=0.1,
            kl_rscale=0.5,
            kl_free=1.0,
            kl_forward=False,
            pred_discount=True,
            dyn_mean_act='none',
            dyn_std_act='sigmoid2',
            dyn_temp_post=True,
            dyn_min_std=0.1,
            dyn_cell='gru_layer_norm',
            unimix_ratio=0.01,
            device='cuda' if torch.cuda.is_available() else 'cpu',
        ),
    )

    def __init__(self, cfg, env, tb_logger):
        WorldModel.__init__(self, cfg, env, tb_logger)
        nn.Module.__init__(self)

        self.pretrain_flag = True
        self._cfg = cfg.model
        #self._cfg.act = getattr(torch.nn, self._cfg.act),
        #self._cfg.norm = getattr(torch.nn, self._cfg.norm),
        self._cfg.act = nn.modules.activation.SiLU  # nn.SiLU
        self._cfg.norm = nn.modules.normalization.LayerNorm  # nn.LayerNorm
        self.state_size = self._cfg.state_size
        self.action_size = self._cfg.action_size
        self.reward_size = self._cfg.reward_size
        self.hidden_size = self._cfg.hidden_size
        self.batch_size = self._cfg.batch_size

        self.encoder = ConvEncoder(
            self.state_size,
            hidden_size_list=[32, 64, 128, 256, 4096],  # to last layer 128?
            activation=torch.nn.SiLU(),
            kernel_size=self._cfg.encoder_kernels,
            layer_norm=True
        )
        self.embed_size = (
            (self.state_size[1] // 2 ** (len(self._cfg.encoder_kernels))) ** 2 * self._cfg.cnn_depth *
            2 ** (len(self._cfg.encoder_kernels) - 1)
        )
        self.dynamics = RSSM(
            self._cfg.dyn_stoch,
            self._cfg.dyn_deter,
            self._cfg.dyn_hidden,
            self._cfg.dyn_input_layers,
            self._cfg.dyn_output_layers,
            self._cfg.dyn_rec_depth,
            self._cfg.dyn_shared,
            self._cfg.dyn_discrete,
            self._cfg.act,
            self._cfg.norm,
            self._cfg.dyn_mean_act,
            self._cfg.dyn_std_act,
            self._cfg.dyn_temp_post,
            self._cfg.dyn_min_std,
            self._cfg.dyn_cell,
            self._cfg.unimix_ratio,
            self._cfg.action_size,
            self.embed_size,
            self._cfg.device,
        )
        self.heads = nn.ModuleDict()
        if self._cfg.dyn_discrete:
            feat_size = self._cfg.dyn_stoch * self._cfg.dyn_discrete + self._cfg.dyn_deter
        else:
            feat_size = self._cfg.dyn_stoch + self._cfg.dyn_deter
        self.heads["image"] = ConvDecoder(
            feat_size,  # pytorch version
            self._cfg.cnn_depth,
            self._cfg.act,
            self._cfg.norm,
            self.state_size,
            self._cfg.decoder_kernels,
        )
        self.heads["reward"] = DenseHead(
            feat_size,  # dyn_stoch * dyn_discrete + dyn_deter
            (255, ),
            self._cfg.reward_layers,
            self._cfg.units,
            'SiLU',  # self._cfg.act
            'LN',  # self._cfg.norm
            dist=self._cfg.reward_head,
            outscale=0.0,
            device=self._cfg.device,
        )
        if self._cfg.pred_discount:
            self.heads["discount"] = DenseHead(
                feat_size,  # pytorch version
                [],
                self._cfg.discount_layers,
                self._cfg.units,
                'SiLU',  # self._cfg.act
                'LN',  # self._cfg.norm
                dist="binary",
                device=self._cfg.device,
            )

        if self._cuda:
            self.cuda()
        # to do
        # grad_clip, weight_decay
        self.optimizer = torch.optim.Adam(self.parameters(), lr=self._cfg.model_lr)

    def step(self, obs, act):
        pass

    def eval(self, env_buffer, envstep, train_iter):
        pass

    def should_pretrain(self):
        if self.pretrain_flag:
            self.pretrain_flag = False
            return True
        return False

    def train(self, env_buffer, envstep, train_iter, batch_size, batch_length):
        self.last_train_step = envstep
        data = env_buffer.sample(
            batch_size, batch_length, train_iter
        )  # [len=B, ele=[len=T, ele={dict_key: Tensor(any_dims)}]]
        data = default_collate(data)  # -> [len=T, ele={dict_key: Tensor(B, any_dims)}]
        data = lists_to_dicts(data, recursive=True)  # -> {some_key: T lists}, each list is [B, some_dim]
        data = {k: torch.stack(data[k], dim=1) for k in data}  # -> {dict_key: Tensor([B, T, any_dims])}

        data['discount'] = data.get('discount', 1.0 - data['done'].float())
        data['discount'] *= 0.997
        data['weight'] = data.get('weight', None)
        data['image'] = data['obs'] - 0.5
        data = to_device(data, self._cfg.device)
        if len(data['reward'].shape) == 2:
            data['reward'] = data['reward'].unsqueeze(-1)
        if len(data['action'].shape) == 2:
            data['action'] = data['action'].unsqueeze(-1)
        if len(data['discount'].shape) == 2:
            data['discount'] = data['discount'].unsqueeze(-1)

        self.requires_grad_(requires_grad=True)

        image = data['image'].reshape([-1] + list(data['image'].shape[-3:]))
        embed = self.encoder(image)
        embed = embed.reshape(list(data['image'].shape[:-3]) + [embed.shape[-1]])

        post, prior = self.dynamics.observe(embed, data["action"])
        kl_loss, kl_value, loss_lhs, loss_rhs = self.dynamics.kl_loss(
            post, prior, self._cfg.kl_forward, self._cfg.kl_free, self._cfg.kl_lscale, self._cfg.kl_rscale
        )
        losses = {}
        likes = {}
        for name, head in self.heads.items():
            grad_head = name in self._cfg.grad_heads
            feat = self.dynamics.get_feat(post)
            feat = feat if grad_head else feat.detach()
            pred = head(feat)
            like = pred.log_prob(data[name])
            likes[name] = like
            losses[name] = -torch.mean(like)
        model_loss = sum(losses.values()) + kl_loss

        # ====================
        # world model update
        # ====================
        self.optimizer.zero_grad()
        model_loss.backward()
        self.optimizer.step()

        self.requires_grad_(requires_grad=False)
        # log
        if self.tb_logger is not None:
            for name, loss in losses.items():
                self.tb_logger.add_scalar(name + '_loss', loss.detach().cpu().numpy().item(), envstep)
        self.tb_logger.add_scalar('kl_free', self._cfg.kl_free, envstep)
        self.tb_logger.add_scalar('kl_lscale', self._cfg.kl_lscale, envstep)
        self.tb_logger.add_scalar('kl_rscale', self._cfg.kl_rscale, envstep)
        self.tb_logger.add_scalar('loss_lhs', loss_lhs.detach().cpu().numpy().item(), envstep)
        self.tb_logger.add_scalar('loss_rhs', loss_rhs.detach().cpu().numpy().item(), envstep)
        self.tb_logger.add_scalar('kl', torch.mean(kl_value).detach().cpu().numpy().item(), envstep)

        prior_ent = torch.mean(self.dynamics.get_dist(prior).entropy()).detach().cpu().numpy()
        post_ent = torch.mean(self.dynamics.get_dist(post).entropy()).detach().cpu().numpy()

        self.tb_logger.add_scalar('prior_ent', prior_ent.item(), envstep)
        self.tb_logger.add_scalar('post_ent', post_ent.item(), envstep)

        context = dict(
            embed=embed,
            feat=self.dynamics.get_feat(post),
            kl=kl_value,
            postent=self.dynamics.get_dist(post).entropy(),
        )
        post = {k: v.detach() for k, v in post.items()}
        return post, context

    def _save_states(self, ):
        self._states = copy.deepcopy(self.state_dict())

    def _save_state(self, id):
        state_dict = self.state_dict()
        for k, v in state_dict.items():
            if 'weight' in k or 'bias' in k:
                self._states[k].data[id] = copy.deepcopy(v.data[id])

    def _load_states(self):
        self.load_state_dict(self._states)

    def _save_best(self, epoch, holdout_losses):
        updated = False
        for i in range(len(holdout_losses)):
            current = holdout_losses[i]
            _, best = self._snapshots[i]
            improvement = (best - current) / best
            if improvement > 0.01:
                self._snapshots[i] = (epoch, current)
                self._save_state(i)
                # self._save_state(i)
                updated = True
                # improvement = (best - current) / best

        if updated:
            self._epochs_since_update = 0
        else:
            self._epochs_since_update += 1
        return self._epochs_since_update > self.max_epochs_since_update