File size: 15,351 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import math
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch import distributions as torchd
from ding.torch_utils.network.dreamer import weight_init, uniform_weight_init, static_scan, \
OneHotDist, ContDist, SymlogDist, DreamerLayerNorm
class RSSM(nn.Module):
def __init__(
self,
stoch=30,
deter=200,
hidden=200,
layers_input=1,
layers_output=1,
rec_depth=1,
shared=False,
discrete=False,
act=nn.ELU,
norm=nn.LayerNorm,
mean_act="none",
std_act="softplus",
temp_post=True,
min_std=0.1,
cell="gru",
unimix_ratio=0.01,
num_actions=None,
embed=None,
device=None,
):
super(RSSM, self).__init__()
self._stoch = stoch
self._deter = deter
self._hidden = hidden
self._min_std = min_std
self._layers_input = layers_input
self._layers_output = layers_output
self._rec_depth = rec_depth
self._shared = shared
self._discrete = discrete
self._act = act
self._norm = norm
self._mean_act = mean_act
self._std_act = std_act
self._temp_post = temp_post
self._unimix_ratio = unimix_ratio
self._embed = embed
self._device = device
inp_layers = []
if self._discrete:
inp_dim = self._stoch * self._discrete + num_actions
else:
inp_dim = self._stoch + num_actions
if self._shared:
inp_dim += self._embed
for i in range(self._layers_input):
inp_layers.append(nn.Linear(inp_dim, self._hidden, bias=False))
inp_layers.append(self._norm(self._hidden, eps=1e-03))
inp_layers.append(self._act())
if i == 0:
inp_dim = self._hidden
self._inp_layers = nn.Sequential(*inp_layers)
self._inp_layers.apply(weight_init)
if cell == "gru":
self._cell = GRUCell(self._hidden, self._deter)
self._cell.apply(weight_init)
elif cell == "gru_layer_norm":
self._cell = GRUCell(self._hidden, self._deter, norm=True)
self._cell.apply(weight_init)
else:
raise NotImplementedError(cell)
img_out_layers = []
inp_dim = self._deter
for i in range(self._layers_output):
img_out_layers.append(nn.Linear(inp_dim, self._hidden, bias=False))
img_out_layers.append(self._norm(self._hidden, eps=1e-03))
img_out_layers.append(self._act())
if i == 0:
inp_dim = self._hidden
self._img_out_layers = nn.Sequential(*img_out_layers)
self._img_out_layers.apply(weight_init)
obs_out_layers = []
if self._temp_post:
inp_dim = self._deter + self._embed
else:
inp_dim = self._embed
for i in range(self._layers_output):
obs_out_layers.append(nn.Linear(inp_dim, self._hidden, bias=False))
obs_out_layers.append(self._norm(self._hidden, eps=1e-03))
obs_out_layers.append(self._act())
if i == 0:
inp_dim = self._hidden
self._obs_out_layers = nn.Sequential(*obs_out_layers)
self._obs_out_layers.apply(weight_init)
if self._discrete:
self._ims_stat_layer = nn.Linear(self._hidden, self._stoch * self._discrete)
self._ims_stat_layer.apply(weight_init)
self._obs_stat_layer = nn.Linear(self._hidden, self._stoch * self._discrete)
self._obs_stat_layer.apply(weight_init)
else:
self._ims_stat_layer = nn.Linear(self._hidden, 2 * self._stoch)
self._ims_stat_layer.apply(weight_init)
self._obs_stat_layer = nn.Linear(self._hidden, 2 * self._stoch)
self._obs_stat_layer.apply(weight_init)
def initial(self, batch_size):
deter = torch.zeros(batch_size, self._deter).to(self._device)
if self._discrete:
state = dict(
logit=torch.zeros([batch_size, self._stoch, self._discrete]).to(self._device),
stoch=torch.zeros([batch_size, self._stoch, self._discrete]).to(self._device),
deter=deter,
)
else:
state = dict(
mean=torch.zeros([batch_size, self._stoch]).to(self._device),
std=torch.zeros([batch_size, self._stoch]).to(self._device),
stoch=torch.zeros([batch_size, self._stoch]).to(self._device),
deter=deter,
)
return state
def observe(self, embed, action, state=None):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape)))) # 交换前两维
if state is None:
state = self.initial(action.shape[0]) # {logit, stoch, deter}
# (batch, time, ch) -> (time, batch, ch)
embed, action = swap(embed), swap(action)
post, prior = static_scan(
lambda prev_state, prev_act, embed: self.obs_step(prev_state[0], prev_act, embed),
(action, embed),
(state, state),
)
# (time, batch, stoch, discrete_num) -> (batch, time, stoch, discrete_num)
post = {k: swap(v) for k, v in post.items()}
prior = {k: swap(v) for k, v in prior.items()}
return post, prior
def imagine(self, action, state=None):
swap = lambda x: x.permute([1, 0] + list(range(2, len(x.shape))))
if state is None:
state = self.initial(action.shape[0])
assert isinstance(state, dict), state
action = action
action = swap(action)
prior = static_scan(self.img_step, [action], state)
prior = prior[0]
prior = {k: swap(v) for k, v in prior.items()}
return prior
def get_feat(self, state):
stoch = state["stoch"]
if self._discrete:
shape = list(stoch.shape[:-2]) + [self._stoch * self._discrete]
stoch = stoch.reshape(shape)
return torch.cat([stoch, state["deter"]], -1)
def get_dist(self, state, dtype=None):
if self._discrete:
logit = state["logit"]
dist = torchd.independent.Independent(OneHotDist(logit, unimix_ratio=self._unimix_ratio), 1)
else:
mean, std = state["mean"], state["std"]
dist = ContDist(torchd.independent.Independent(torchd.normal.Normal(mean, std), 1))
return dist
def obs_step(self, prev_state, prev_action, embed, sample=True):
# if shared is True, prior and post both use same networks(inp_layers, _img_out_layers, _ims_stat_layer)
# otherwise, post use different network(_obs_out_layers) with prior[deter] and embed as inputs
prev_action *= (1.0 / torch.clip(torch.abs(prev_action), min=1.0)).detach()
prior = self.img_step(prev_state, prev_action, None, sample)
if self._shared:
post = self.img_step(prev_state, prev_action, embed, sample)
else:
if self._temp_post:
x = torch.cat([prior["deter"], embed], -1)
else:
x = embed
# (batch_size, prior_deter + embed) -> (batch_size, hidden)
x = self._obs_out_layers(x)
# (batch_size, hidden) -> (batch_size, stoch, discrete_num)
stats = self._suff_stats_layer("obs", x)
if sample:
stoch = self.get_dist(stats).sample()
else:
stoch = self.get_dist(stats).mode()
post = {"stoch": stoch, "deter": prior["deter"], **stats}
return post, prior
# this is used for making future image
def img_step(self, prev_state, prev_action, embed=None, sample=True):
# (batch, stoch, discrete_num)
prev_action *= (1.0 / torch.clip(torch.abs(prev_action), min=1.0)).detach()
prev_stoch = prev_state["stoch"]
if self._discrete:
shape = list(prev_stoch.shape[:-2]) + [self._stoch * self._discrete]
# (batch, stoch, discrete_num) -> (batch, stoch * discrete_num)
prev_stoch = prev_stoch.reshape(shape)
if self._shared:
if embed is None:
shape = list(prev_action.shape[:-1]) + [self._embed]
embed = torch.zeros(shape)
# (batch, stoch * discrete_num) -> (batch, stoch * discrete_num + action, embed)
x = torch.cat([prev_stoch, prev_action, embed], -1)
else:
x = torch.cat([prev_stoch, prev_action], -1)
# (batch, stoch * discrete_num + action, embed) -> (batch, hidden)
x = self._inp_layers(x)
for _ in range(self._rec_depth): # rec depth is not correctly implemented
deter = prev_state["deter"]
# (batch, hidden), (batch, deter) -> (batch, deter), (batch, deter)
x, deter = self._cell(x, [deter])
deter = deter[0] # Keras wraps the state in a list.
# (batch, deter) -> (batch, hidden)
x = self._img_out_layers(x)
# (batch, hidden) -> (batch_size, stoch, discrete_num)
stats = self._suff_stats_layer("ims", x)
if sample:
stoch = self.get_dist(stats).sample()
else:
stoch = self.get_dist(stats).mode()
prior = {"stoch": stoch, "deter": deter, **stats} # {stoch, deter, logit}
return prior
def _suff_stats_layer(self, name, x):
if self._discrete:
if name == "ims":
x = self._ims_stat_layer(x)
elif name == "obs":
x = self._obs_stat_layer(x)
else:
raise NotImplementedError
logit = x.reshape(list(x.shape[:-1]) + [self._stoch, self._discrete])
return {"logit": logit}
else:
if name == "ims":
x = self._ims_stat_layer(x)
elif name == "obs":
x = self._obs_stat_layer(x)
else:
raise NotImplementedError
mean, std = torch.split(x, [self._stoch] * 2, -1)
mean = {
"none": lambda: mean,
"tanh5": lambda: 5.0 * torch.tanh(mean / 5.0),
}[self._mean_act]()
std = {
"softplus": lambda: torch.softplus(std),
"abs": lambda: torch.abs(std + 1),
"sigmoid": lambda: torch.sigmoid(std),
"sigmoid2": lambda: 2 * torch.sigmoid(std / 2),
}[self._std_act]()
std = std + self._min_std
return {"mean": mean, "std": std}
def kl_loss(self, post, prior, forward, free, lscale, rscale):
kld = torchd.kl.kl_divergence
dist = lambda x: self.get_dist(x)
sg = lambda x: {k: v.detach() for k, v in x.items()}
# forward == false -> (post, prior)
lhs, rhs = (prior, post) if forward else (post, prior)
# forward == false -> Lrep
value_lhs = value = kld(
dist(lhs) if self._discrete else dist(lhs)._dist,
dist(sg(rhs)) if self._discrete else dist(sg(rhs))._dist,
)
# forward == false -> Ldyn
value_rhs = kld(
dist(sg(lhs)) if self._discrete else dist(sg(lhs))._dist,
dist(rhs) if self._discrete else dist(rhs)._dist,
)
loss_lhs = torch.clip(torch.mean(value_lhs), min=free)
loss_rhs = torch.clip(torch.mean(value_rhs), min=free)
loss = lscale * loss_lhs + rscale * loss_rhs
return loss, value, loss_lhs, loss_rhs
class ConvDecoder(nn.Module):
def __init__(
self,
inp_depth, # config.dyn_stoch * config.dyn_discrete + config.dyn_deter
depth=32,
act=nn.ELU,
norm=nn.LayerNorm,
shape=(3, 64, 64),
kernels=(3, 3, 3, 3),
outscale=1.0,
):
super(ConvDecoder, self).__init__()
self._inp_depth = inp_depth
self._act = act
self._norm = norm
self._depth = depth
self._shape = shape
self._kernels = kernels
self._embed_size = ((64 // 2 ** (len(kernels))) ** 2 * depth * 2 ** (len(kernels) - 1))
self._linear_layer = nn.Linear(inp_depth, self._embed_size)
inp_dim = self._embed_size // 16 # 除以最后的4*4 feature map来得到channel数
layers = []
h, w = 4, 4
for i, kernel in enumerate(self._kernels):
depth = self._embed_size // 16 // (2 ** (i + 1))
act = self._act
bias = False
initializer = weight_init
if i == len(self._kernels) - 1:
depth = self._shape[0]
act = False
bias = True
norm = False
initializer = uniform_weight_init(outscale)
if i != 0:
inp_dim = 2 ** (len(self._kernels) - (i - 1) - 2) * self._depth
pad_h, outpad_h = self.calc_same_pad(k=kernel, s=2, d=1)
pad_w, outpad_w = self.calc_same_pad(k=kernel, s=2, d=1)
layers.append(
nn.ConvTranspose2d(
inp_dim,
depth,
kernel,
2,
padding=(pad_h, pad_w),
output_padding=(outpad_h, outpad_w),
bias=bias,
)
)
if norm:
layers.append(DreamerLayerNorm(depth))
if act:
layers.append(act())
[m.apply(initializer) for m in layers[-3:]]
h, w = h * 2, w * 2
self.layers = nn.Sequential(*layers)
def calc_same_pad(self, k, s, d):
val = d * (k - 1) - s + 1
pad = math.ceil(val / 2)
outpad = pad * 2 - val
return pad, outpad
def __call__(self, features, dtype=None):
x = self._linear_layer(features) # feature:[batch, time, stoch*discrete + deter]
x = x.reshape([-1, 4, 4, self._embed_size // 16])
x = x.permute(0, 3, 1, 2)
x = self.layers(x)
mean = x.reshape(list(features.shape[:-1]) + self._shape)
#mean = mean.permute(0, 1, 3, 4, 2)
return SymlogDist(mean)
class GRUCell(nn.Module):
def __init__(self, inp_size, size, norm=False, act=torch.tanh, update_bias=-1):
super(GRUCell, self).__init__()
self._inp_size = inp_size # hidden
self._size = size # deter
self._act = act
self._norm = norm
self._update_bias = update_bias
self._layer = nn.Linear(inp_size + size, 3 * size, bias=False)
if norm:
self._norm = nn.LayerNorm(3 * size, eps=1e-03)
@property
def state_size(self):
return self._size
def forward(self, inputs, state):
state = state[0] # Keras wraps the state in a list.
parts = self._layer(torch.cat([inputs, state], -1))
if self._norm:
parts = self._norm(parts)
reset, cand, update = torch.split(parts, [self._size] * 3, -1)
reset = torch.sigmoid(reset)
cand = self._act(reset * cand)
update = torch.sigmoid(update + self._update_bias)
output = update * cand + (1 - update) * state
return output, [output]
|