File size: 22,758 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import copy
import time
from collections import namedtuple
from typing import Optional, Callable, Tuple

import numpy as np
import torch
from ding.envs import BaseEnvManager
from ding.torch_utils import to_ndarray, to_item, to_tensor
from ding.utils import build_logger, EasyTimer
from ding.utils import get_world_size, get_rank, broadcast_object_list
from ding.worker.collector.base_serial_evaluator import ISerialEvaluator, VectorEvalMonitor
from easydict import EasyDict

from lzero.mcts.buffer.game_segment import GameSegment
from lzero.mcts.utils import prepare_observation


class MuZeroEvaluator(ISerialEvaluator):
    """
    Overview:
        The Evaluator for MCTS+RL algorithms, including MuZero, EfficientZero, Sampled EfficientZero.
    Interfaces:
        __init__, reset, reset_policy, reset_env, close, should_eval, eval
    Property:
        env, policy
    """

    @classmethod
    def default_config(cls: type) -> EasyDict:
        """
        Overview:
            Get evaluator's default config. We merge evaluator's default config with other default configs\
                and user's config to get the final config.
        Return:
            cfg (:obj:`EasyDict`): evaluator's default config
        """
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    config = dict(
        # Evaluate every "eval_freq" training iterations.
        eval_freq=50,
    )

    def __init__(
            self,
            eval_freq: int = 1000,
            n_evaluator_episode: int = 3,
            stop_value: int = 1e6,
            env: BaseEnvManager = None,
            policy: namedtuple = None,
            tb_logger: 'SummaryWriter' = None,  # noqa
            exp_name: Optional[str] = 'default_experiment',
            instance_name: Optional[str] = 'evaluator',
            policy_config: 'policy_config' = None,  # noqa
    ) -> None:
        """
        Overview:
            Init method. Load config and use ``self._cfg`` setting to build common serial evaluator components,
            e.g. logger helper, timer.
        Arguments:
            - eval_freq (:obj:`int`): evaluation frequency in terms of training steps.
            - n_evaluator_episode (:obj:`int`): the number of episodes to eval in total.
            - env (:obj:`BaseEnvManager`): the subclass of vectorized env_manager(BaseEnvManager)
            - policy (:obj:`namedtuple`): the api namedtuple of collect_mode policy
            - tb_logger (:obj:`SummaryWriter`): tensorboard handle
            - exp_name (:obj:`str`): Experiment name, which is used to indicate output directory.
            - instance_name (:obj:`Optional[str]`): Name of this instance.
            - policy_config: Config of game.
        """
        self._eval_freq = eval_freq
        self._exp_name = exp_name
        self._instance_name = instance_name

        # Logger (Monitor will be initialized in policy setter)
        # Only rank == 0 learner needs monitor and tb_logger, others only need text_logger to display terminal output.
        if get_rank() == 0:
            if tb_logger is not None:
                self._logger, _ = build_logger(
                    './{}/log/{}'.format(self._exp_name, self._instance_name), self._instance_name, need_tb=False
                )
                self._tb_logger = tb_logger
            else:
                self._logger, self._tb_logger = build_logger(
                    './{}/log/{}'.format(self._exp_name, self._instance_name), self._instance_name
                )
        else:
            self._logger, self._tb_logger = None, None  # for close elegantly

        self.reset(policy, env)

        self._timer = EasyTimer()
        self._default_n_episode = n_evaluator_episode
        self._stop_value = stop_value

        # ==============================================================
        # MCTS+RL related core code
        # ==============================================================
        self.policy_config = policy_config

    def reset_env(self, _env: Optional[BaseEnvManager] = None) -> None:
        """
        Overview:
            Reset evaluator's environment. In some case, we need evaluator use the same policy in different \
                environments. We can use reset_env to reset the environment.
            If _env is None, reset the old environment.
            If _env is not None, replace the old environment in the evaluator with the \
                new passed in environment and launch.
        Arguments:
            - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
                env_manager(BaseEnvManager)
        """
        if _env is not None:
            self._env = _env
            self._env.launch()
            self._env_num = self._env.env_num
        else:
            self._env.reset()

    def reset_policy(self, _policy: Optional[namedtuple] = None) -> None:
        """
        Overview:
            Reset evaluator's policy. In some case, we need evaluator work in this same environment but use\
                different policy. We can use reset_policy to reset the policy.
            If _policy is None, reset the old policy.
            If _policy is not None, replace the old policy in the evaluator with the new passed in policy.
        Arguments:
            - policy (:obj:`Optional[namedtuple]`): the api namedtuple of eval_mode policy
        """
        assert hasattr(self, '_env'), "please set env first"
        if _policy is not None:
            self._policy = _policy
        self._policy.reset()

    def reset(self, _policy: Optional[namedtuple] = None, _env: Optional[BaseEnvManager] = None) -> None:
        """
        Overview:
            Reset evaluator's policy and environment. Use new policy and environment to collect data.
            If _env is None, reset the old environment.
            If _env is not None, replace the old environment in the evaluator with the new passed in \
                environment and launch.
            If _policy is None, reset the old policy.
            If _policy is not None, replace the old policy in the evaluator with the new passed in policy.
        Arguments:
            - policy (:obj:`Optional[namedtuple]`): the api namedtuple of eval_mode policy
            - env (:obj:`Optional[BaseEnvManager]`): instance of the subclass of vectorized \
                env_manager(BaseEnvManager)
        """
        if _env is not None:
            self.reset_env(_env)
        if _policy is not None:
            self.reset_policy(_policy)
        self._max_episode_return = float("-inf")
        self._last_eval_iter = 0
        self._end_flag = False

    def close(self) -> None:
        """
        Overview:
            Close the evaluator. If end_flag is False, close the environment, flush the tb_logger\
                and close the tb_logger.
        """
        if self._end_flag:
            return
        self._end_flag = True
        self._env.close()
        if self._tb_logger:
            self._tb_logger.flush()
            self._tb_logger.close()

    def __del__(self):
        """
        Overview:
            Execute the close command and close the evaluator. __del__ is automatically called \
                to destroy the evaluator instance when the evaluator finishes its work
        """
        self.close()

    def should_eval(self, train_iter: int) -> bool:
        """
        Overview:
            Determine whether you need to start the evaluation mode, if the number of training has reached\
                the maximum number of times to start the evaluator, return True
        Arguments:
            - train_iter (:obj:`int`): Current training iteration.
        """
        if train_iter == self._last_eval_iter:
            return False
        if (train_iter - self._last_eval_iter) < self._eval_freq and train_iter != 0:
            return False
        self._last_eval_iter = train_iter
        return True

    def eval(
            self,
            save_ckpt_fn: Callable = None,
            train_iter: int = -1,
            envstep: int = -1,
            n_episode: Optional[int] = None,
    ) -> Tuple[bool, float]:
        """
        Overview:
            Evaluate policy and store the best policy based on whether it reaches the highest historical reward.
        Arguments:
            - save_ckpt_fn (:obj:`Callable`): Saving ckpt function, which will be triggered by getting the best reward.
            - train_iter (:obj:`int`): Current training iteration.
            - envstep (:obj:`int`): Current env interaction step.
            - n_episode (:obj:`int`): Number of evaluation episodes.
        Returns:
            - stop_flag (:obj:`bool`): Whether this training program can be ended.
            - episode_info (:obj:`Dict[str, List]`): Current evaluation episode information.
        """
        # evaluator only work on rank0
        episode_info = None
        stop_flag = False
        if get_rank() == 0:
            if n_episode is None:
                n_episode = self._default_n_episode
            assert n_episode is not None, "please indicate eval n_episode"
            envstep_count = 0
            eval_monitor = VectorEvalMonitor(self._env.env_num, n_episode)
            env_nums = self._env.env_num

            self._env.reset()
            self._policy.reset()

            # initializations
            init_obs = self._env.ready_obs

            retry_waiting_time = 0.001
            while len(init_obs.keys()) != self._env_num:
                # In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to
                # len(self._env.ready_obs), especially in tictactoe env.
                self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys()))
                self._logger.info('Before sleeping, the _env_states is {}'.format(self._env._env_states))
                time.sleep(retry_waiting_time)
                self._logger.info('=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10)
                self._logger.info(
                    'After sleeping {}s, the current _env_states is {}'.format(retry_waiting_time,
                                                                               self._env._env_states)
                )
                init_obs = self._env.ready_obs

            action_mask_dict = {i: to_ndarray(init_obs[i]['action_mask']) for i in range(env_nums)}

            to_play_dict = {i: to_ndarray(init_obs[i]['to_play']) for i in range(env_nums)}
            dones = np.array([False for _ in range(env_nums)])

            game_segments = [
                GameSegment(
                    self._env.action_space,
                    game_segment_length=self.policy_config.game_segment_length,
                    config=self.policy_config
                ) for _ in range(env_nums)
            ]
            for i in range(env_nums):
                game_segments[i].reset(
                    [to_ndarray(init_obs[i]['observation']) for _ in range(self.policy_config.model.frame_stack_num)]
                )

            ready_env_id = set()
            remain_episode = n_episode

            with self._timer:
                while not eval_monitor.is_finished():
                    # Get current ready env obs.
                    obs = self._env.ready_obs
                    new_available_env_id = set(obs.keys()).difference(ready_env_id)
                    ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
                    remain_episode -= min(len(new_available_env_id), remain_episode)

                    stack_obs = {env_id: game_segments[env_id].get_obs() for env_id in ready_env_id}
                    stack_obs = list(stack_obs.values())

                    action_mask_dict = {env_id: action_mask_dict[env_id] for env_id in ready_env_id}
                    to_play_dict = {env_id: to_play_dict[env_id] for env_id in ready_env_id}
                    action_mask = [action_mask_dict[env_id] for env_id in ready_env_id]
                    to_play = [to_play_dict[env_id] for env_id in ready_env_id]

                    stack_obs = to_ndarray(stack_obs)
                    stack_obs = prepare_observation(stack_obs, self.policy_config.model.model_type)
                    stack_obs = torch.from_numpy(stack_obs).to(self.policy_config.device).float()

                    # ==============================================================
                    # policy forward
                    # ==============================================================
                    policy_output = self._policy.forward(stack_obs, action_mask, to_play)

                    actions_no_env_id = {k: v['action'] for k, v in policy_output.items()}
                    distributions_dict_no_env_id = {k: v['visit_count_distributions'] for k, v in policy_output.items()}
                    if self.policy_config.sampled_algo:
                        root_sampled_actions_dict_no_env_id = {
                            k: v['root_sampled_actions']
                            for k, v in policy_output.items()
                        }

                    value_dict_no_env_id = {k: v['searched_value'] for k, v in policy_output.items()}
                    pred_value_dict_no_env_id = {k: v['predicted_value'] for k, v in policy_output.items()}
                    visit_entropy_dict_no_env_id = {
                        k: v['visit_count_distribution_entropy']
                        for k, v in policy_output.items()
                    }

                    actions = {}
                    distributions_dict = {}
                    if self.policy_config.sampled_algo:
                        root_sampled_actions_dict = {}
                    value_dict = {}
                    pred_value_dict = {}
                    visit_entropy_dict = {}
                    for index, env_id in enumerate(ready_env_id):
                        actions[env_id] = actions_no_env_id.pop(index)
                        distributions_dict[env_id] = distributions_dict_no_env_id.pop(index)
                        if self.policy_config.sampled_algo:
                            root_sampled_actions_dict[env_id] = root_sampled_actions_dict_no_env_id.pop(index)
                        value_dict[env_id] = value_dict_no_env_id.pop(index)
                        pred_value_dict[env_id] = pred_value_dict_no_env_id.pop(index)
                        visit_entropy_dict[env_id] = visit_entropy_dict_no_env_id.pop(index)

                    # ==============================================================
                    # Interact with env.
                    # ==============================================================
                    timesteps = self._env.step(actions)
                    timesteps = to_tensor(timesteps, dtype=torch.float32)
                    for env_id, t in timesteps.items():
                        obs, reward, done, info = t.obs, t.reward, t.done, t.info

                        game_segments[env_id].append(
                            actions[env_id], to_ndarray(obs['observation']), reward, action_mask_dict[env_id],
                            to_play_dict[env_id]
                        )

                        # NOTE: in evaluator, we only need save the ``o_{t+1} = obs['observation']``
                        # game_segments[env_id].obs_segment.append(to_ndarray(obs['observation']))

                        # NOTE: the position of code snippet is very important.
                        # the obs['action_mask'] and obs['to_play'] are corresponding to next action
                        action_mask_dict[env_id] = to_ndarray(obs['action_mask'])
                        to_play_dict[env_id] = to_ndarray(obs['to_play'])

                        dones[env_id] = done
                        if t.done:
                            # Env reset is done by env_manager automatically.
                            self._policy.reset([env_id])
                            reward = t.info['eval_episode_return']
                            saved_info = {'eval_episode_return': t.info['eval_episode_return']}
                            if 'episode_info' in t.info:
                                saved_info.update(t.info['episode_info'])
                            eval_monitor.update_info(env_id, saved_info)
                            eval_monitor.update_reward(env_id, reward)
                            self._logger.info(
                                "[EVALUATOR]env {} finish episode, final reward: {}, current episode: {}".format(
                                    env_id, eval_monitor.get_latest_reward(env_id), eval_monitor.get_current_episode()
                                )
                            )

                            # reset the finished env and init game_segments
                            if n_episode > self._env_num:
                                # Get current ready env obs.
                                init_obs = self._env.ready_obs
                                retry_waiting_time = 0.001
                                while len(init_obs.keys()) != self._env_num:
                                    # In order to be compatible with subprocess env_manager, in which sometimes self._env_num is not equal to
                                    # len(self._env.ready_obs), especially in tictactoe env.
                                    self._logger.info('The current init_obs.keys() is {}'.format(init_obs.keys()))
                                    self._logger.info(
                                        'Before sleeping, the _env_states is {}'.format(self._env._env_states)
                                    )
                                    time.sleep(retry_waiting_time)
                                    self._logger.info(
                                        '=' * 10 + 'Wait for all environments (subprocess) to finish resetting.' + '=' * 10
                                    )
                                    self._logger.info(
                                        'After sleeping {}s, the current _env_states is {}'.format(
                                            retry_waiting_time, self._env._env_states
                                        )
                                    )
                                    init_obs = self._env.ready_obs

                                new_available_env_id = set(init_obs.keys()).difference(ready_env_id)
                                ready_env_id = ready_env_id.union(set(list(new_available_env_id)[:remain_episode]))
                                remain_episode -= min(len(new_available_env_id), remain_episode)

                                action_mask_dict[env_id] = to_ndarray(init_obs[env_id]['action_mask'])
                                to_play_dict[env_id] = to_ndarray(init_obs[env_id]['to_play'])

                                game_segments[env_id] = GameSegment(
                                    self._env.action_space,
                                    game_segment_length=self.policy_config.game_segment_length,
                                    config=self.policy_config
                                )

                                game_segments[env_id].reset(
                                    [
                                        init_obs[env_id]['observation']
                                        for _ in range(self.policy_config.model.frame_stack_num)
                                    ]
                                )

                            # Env reset is done by env_manager automatically.
                            self._policy.reset([env_id])
                            # TODO(pu): subprocess mode, when n_episode > self._env_num, occasionally the ready_env_id=()
                            # and the stack_obs is np.array(None, dtype=object)
                            ready_env_id.remove(env_id)

                        envstep_count += 1
            duration = self._timer.value
            episode_return = eval_monitor.get_episode_return()
            info = {
                'train_iter': train_iter,
                'ckpt_name': 'iteration_{}.pth.tar'.format(train_iter),
                'episode_count': n_episode,
                'envstep_count': envstep_count,
                'avg_envstep_per_episode': envstep_count / n_episode,
                'evaluate_time': duration,
                'avg_envstep_per_sec': envstep_count / duration,
                'avg_time_per_episode': n_episode / duration,
                'reward_mean': np.mean(episode_return),
                'reward_std': np.std(episode_return),
                'reward_max': np.max(episode_return),
                'reward_min': np.min(episode_return),
                # 'each_reward': episode_return,
            }
            episode_info = eval_monitor.get_episode_info()
            if episode_info is not None:
                info.update(episode_info)
            self._logger.info(self._logger.get_tabulate_vars_hor(info))
            # self._logger.info(self._logger.get_tabulate_vars(info))
            for k, v in info.items():
                if k in ['train_iter', 'ckpt_name', 'each_reward']:
                    continue
                if not np.isscalar(v):
                    continue
                self._tb_logger.add_scalar('{}_iter/'.format(self._instance_name) + k, v, train_iter)
                self._tb_logger.add_scalar('{}_step/'.format(self._instance_name) + k, v, envstep)
            episode_return = np.mean(episode_return)
            if episode_return > self._max_episode_return:
                if save_ckpt_fn:
                    save_ckpt_fn('ckpt_best.pth.tar')
                self._max_episode_return = episode_return
            stop_flag = episode_return >= self._stop_value and train_iter > 0
            if stop_flag:
                self._logger.info(
                    "[LightZero serial pipeline] " +
                    "Current episode_return: {} is greater than stop_value: {}".format(episode_return,
                                                                                       self._stop_value) +
                    ", so your MCTS/RL agent is converged, you can refer to 'log/evaluator/evaluator_logger.txt' for details."
                )

        if get_world_size() > 1:
            objects = [stop_flag, episode_info]
            broadcast_object_list(objects, src=0)
            stop_flag, episode_info = objects

        episode_info = to_item(episode_info)
        return stop_flag, episode_info