File size: 21,648 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
"""
Overview:
Implement games between different bots to test the win rates and the speed.
Example:
test_tictactoe_mcts_bot_vs_alphabeta_bot means a game between mcts_bot and alphabeta_bot where
mcts_bot makes the first move (i.e. bots on the left make the first move).
"""
import time
import numpy as np
from easydict import EasyDict
from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv
from zoo.board_games.mcts_bot import MCTSBot
from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv
cfg_tictactoe = dict(
battle_mode='self_play_mode',
agent_vs_human=False,
bot_action_type='v0', # {'v0', 'alpha_beta_pruning'}
prob_random_agent=0,
prob_expert_agent=0,
channel_last=True,
scale=True,
prob_random_action_in_bot=0.,
)
def test_tictactoe_mcts_bot_vs_rule_bot_v0_bot(num_simulations=50):
"""
Overview:
A tictactoe game between mcts_bot and rule_bot, where rule_bot take the first move.
Arguments:
- num_simulations (:obj:`int`): The number of the simulations required to find the best move.
"""
cfg_tictactoe['bot_action_type'] = 'v0'
# List to record the time required for each decision round and the winner.
mcts_bot_time_list = []
bot_action_time_list = []
winner = []
# Repeat the game for 10 rounds.
for i in range(10):
print('-' * 10 + str(i) + '-' * 10)
# Initialize the game, where there are two players: player 1 and player 2.
env = TicTacToeEnv(EasyDict(cfg_tictactoe))
# Reset the environment, set the board to a clean board and the start player to be player 1.
env.reset()
state = env.board
player = MCTSBot(env, 'a', num_simulations) # player_index = 0, player = 1
# Set player 1 to move first.
player_index = 0
while not env.get_done_reward()[0]:
"""
Overview:
The two players take turns to make moves, and the time required for each decision is recorded.
"""
# Set rule_bot to be player 1.
if player_index == 0:
t1 = time.time()
action = env.bot_action()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
mcts_bot_time_list.append(t2 - t1)
player_index = 1
# Set mcts_bot to be player 2.
else:
t1 = time.time()
# action = env.bot_action()
action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
bot_action_time_list.append(t2 - t1)
player_index = 0
env.step(action)
state = env.board
print(state)
# Record the winner.
winner.append(env.get_done_winner()[1])
# Calculate the variance and mean of decision times.
mcts_bot_mu = np.mean(mcts_bot_time_list)
mcts_bot_var = np.var(mcts_bot_time_list)
bot_action_mu = np.mean(bot_action_time_list)
bot_action_var = np.var(bot_action_time_list)
# Print the information of the games.
print('num_simulations={}\n'.format(num_simulations))
print('mcts_bot_time_list={}\n'.format(mcts_bot_time_list))
print('mcts_bot_mu={}, mcts_bot_var={}\n'.format(mcts_bot_mu, mcts_bot_var))
print('bot_action_time_list={}\n'.format(bot_action_time_list))
print('bot_action_mu={}, bot_action_var={}\n'.format(bot_action_mu, bot_action_var))
print(
'winner={}, draw={}, player1={}, player2={}\n'.format(
winner, winner.count(-1), winner.count(1), winner.count(2)
)
)
def test_tictactoe_alphabeta_bot_vs_rule_bot_v0_bot(num_simulations=50):
"""
Overview:
A tictactoe game between alphabeta_bot and rule_bot, where alphabeta_bot take the first move.
Arguments:
- num_simulations (:obj:`int`): The number of the simulations required to find the best move.
"""
cfg_tictactoe['bot_action_type'] = 'alpha_beta_pruning'
# List to record the time required for each decision round and the winner.
alphabeta_pruning_time_list = []
rule_bot_v0_time_list = []
winner = []
# Repeat the game for 10 rounds.
for i in range(10):
print('-' * 10 + str(i) + '-' * 10)
# Initialize the game, where there are two players: player 1 and player 2.
env = TicTacToeEnv(EasyDict(cfg_tictactoe))
# Reset the environment, set the board to a clean board and the start player to be player 1.
env.reset(start_player_index=1)
state = env.board
player = MCTSBot(env, 'a', num_simulations) # player_index = 0, player = 1
# Set player 2 to move first.
player_index = 1
while not env.get_done_reward()[0]:
"""
Overview:
The two players take turns to make moves, and the time required for each decision is recorded.
"""
# Set rule_bot to be player 1.
if player_index == 0:
t1 = time.time()
action = env.rule_bot_v0()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
# mcts_bot_time_list.append(t2 - t1)
rule_bot_v0_time_list.append(t2 - t1)
player_index = 1
# Set alpha_beta_bot to be player 2.
else:
t1 = time.time()
action = env.bot_action_alpha_beta_pruning()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
alphabeta_pruning_time_list.append(t2 - t1)
player_index = 0
env.step(action)
state = env.board
if env.get_done_reward()[0]:
print(state)
# Record the winner.
winner.append(env.get_done_winner()[1])
# Calculate the variance and mean of decision times.
alphabeta_pruning_mu = np.mean(alphabeta_pruning_time_list)
alphabeta_pruning_var = np.var(alphabeta_pruning_time_list)
rule_bot_v0_mu = np.mean(rule_bot_v0_time_list)
rule_bot_v0_var = np.var(rule_bot_v0_time_list)
# Print the information of the games.
print('num_simulations={}\n'.format(num_simulations))
print('alphabeta_pruning_time_list={}\n'.format(alphabeta_pruning_time_list))
print('alphabeta_pruning_mu={}, alphabeta_pruning_var={}\n'.format(alphabeta_pruning_mu, alphabeta_pruning_var))
print('rule_bot_v0_time_list={}\n'.format(rule_bot_v0_time_list))
print('rule_bot_v0_mu={}, bot_action_var={}\n'.format(rule_bot_v0_mu, rule_bot_v0_var))
print(
'winner={}, draw={}, player1={}, player2={}\n'.format(
winner, winner.count(-1), winner.count(1), winner.count(2)
)
)
def test_tictactoe_alphabeta_bot_vs_mcts_bot(num_simulations=50):
"""
Overview:
A tictactoe game between alphabeta_bot and mcts_bot, where mcts_bot take the first move.
Arguments:
- num_simulations (:obj:`int`): The number of the simulations required to find the best move.
"""
cfg_tictactoe['bot_action_type'] = 'alpha_beta_pruning'
# List to record the time required for each decision round and the winner.
alphabeta_pruning_time_list = []
mcts_bot_time_list = []
winner = []
# Repeat the game for 10 rounds.
for i in range(10):
print('-' * 10 + str(i) + '-' * 10)
# Initialize the game, where there are two players: player 1 and player 2.
env = TicTacToeEnv(EasyDict(cfg_tictactoe))
# Reset the environment, set the board to a clean board and the start player to be player 1.
env.reset(start_player_index=1)
state = env.board
player = MCTSBot(env, 'a', num_simulations) # player_index = 0, player = 1
# Set player 2 to move first.
player_index = 1
while not env.get_done_reward()[0]:
"""
Overview:
The two players take turns to make moves, and the time required for each decision is recorded.
"""
# Set mcts_bot to be player 1.
if player_index == 0:
t1 = time.time()
# action = env.rule_bot_v0()
action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
mcts_bot_time_list.append(t2 - t1)
# rule_bot_v0_time_list.append(t2 - t1)
player_index = 1
# Set alpha_beta_bot to be player 2.
else:
t1 = time.time()
action = env.bot_action_alpha_beta_pruning()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
alphabeta_pruning_time_list.append(t2 - t1)
player_index = 0
env.step(action)
state = env.board
print(state)
print(action)
if env.get_done_reward()[0]:
print(state)
# Record the winner.
winner.append(env.get_done_winner()[1])
# Calculate the variance and mean of decision times.
alphabeta_pruning_mu = np.mean(alphabeta_pruning_time_list)
alphabeta_pruning_var = np.var(alphabeta_pruning_time_list)
mcts_bot_mu = np.mean(mcts_bot_time_list)
mcts_bot_var = np.var(mcts_bot_time_list)
# Print the information of the games.
print('num_simulations={}\n'.format(num_simulations))
print('alphabeta_pruning_time_list={}\n'.format(alphabeta_pruning_time_list))
print('alphabeta_pruning_mu={}, alphabeta_pruning_var={}\n'.format(alphabeta_pruning_mu, alphabeta_pruning_var))
print('mcts_bot_time_list={}\n'.format(mcts_bot_time_list))
print('mcts_bot_mu={}, mcts_bot_var={}\n'.format(mcts_bot_mu, mcts_bot_var))
print(
'winner={}, draw={}, player1={}, player2={}\n'.format(
winner, winner.count(-1), winner.count(1), winner.count(2)
)
)
def test_tictactoe_rule_bot_v0_bot_vs_alphabeta_bot(num_simulations=50):
"""
Overview:
A tictactoe game between rule_bot and alphabeta_bot, where rule_bot take the first move.
Arguments:
- num_simulations (:obj:`int`): The number of the simulations required to find the best move.
"""
cfg_tictactoe['bot_action_type'] = 'alpha_beta_pruning'
# List to record the time required for each decision round and the winner.
alphabeta_pruning_time_list = []
rule_bot_v0_time_list = []
winner = []
# Repeat the game for 10 rounds.
for i in range(10):
print('-' * 10 + str(i) + '-' * 10)
# Initialize the game, where there are two players: player 1 and player 2.
env = TicTacToeEnv(EasyDict(cfg_tictactoe))
# Reset the environment, set the board to a clean board and the start player to be player 1.
env.reset()
state = env.board
player = MCTSBot(env, 'a', num_simulations) # player_index = 0, player = 1
# Set player 1 to move first.
player_index = 0
while not env.get_done_reward()[0]:
"""
Overview:
The two players take turns to make moves, and the time required for each decision is recorded.
"""
# Set rule_bot to be player 1.
if player_index == 0:
t1 = time.time()
action = env.rule_bot_v0()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
# mcts_bot_time_list.append(t2 - t1)
rule_bot_v0_time_list.append(t2 - t1)
player_index = 1
# Set alpha_beta_bot to be player 2.
else:
t1 = time.time()
action = env.bot_action_alpha_beta_pruning()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
alphabeta_pruning_time_list.append(t2 - t1)
player_index = 0
env.step(action)
state = env.board
if env.get_done_reward()[0]:
print(state)
# Record the winner.
winner.append(env.get_done_winner()[1])
# Calculate the variance and mean of decision times.
alphabeta_pruning_mu = np.mean(alphabeta_pruning_time_list)
alphabeta_pruning_var = np.var(alphabeta_pruning_time_list)
rule_bot_v0_mu = np.mean(rule_bot_v0_time_list)
rule_bot_v0_var = np.var(rule_bot_v0_time_list)
# Print the information of the games.
print('num_simulations={}\n'.format(num_simulations))
print('alphabeta_pruning_time_list={}\n'.format(alphabeta_pruning_time_list))
print('alphabeta_pruning_mu={}, alphabeta_pruning_var={}\n'.format(alphabeta_pruning_mu, alphabeta_pruning_var))
print('rule_bot_v0_time_list={}\n'.format(rule_bot_v0_time_list))
print('rule_bot_v0_mu={}, bot_action_var={}\n'.format(rule_bot_v0_mu, rule_bot_v0_var))
print(
'winner={}, draw={}, player1={}, player2={}\n'.format(
winner, winner.count(-1), winner.count(1), winner.count(2)
)
)
def test_tictactoe_mcts_bot_vs_alphabeta_bot(num_simulations=50):
"""
Overview:
A tictactoe game between mcts_bot and alphabeta_bot, where mcts_bot take the first move.
Arguments:
- num_simulations (:obj:`int`): The number of the simulations required to find the best move.
"""
cfg_tictactoe['bot_action_type'] = 'alpha_beta_pruning'
# List to record the time required for each decision round and the winner.
alphabeta_pruning_time_list = []
mcts_bot_time_list = []
winner = []
# Repeat the game for 10 rounds.
for i in range(10):
print('-' * 10 + str(i) + '-' * 10)
# Initialize the game, where there are two players: player 1 and player 2.
env = TicTacToeEnv(EasyDict(cfg_tictactoe))
# Reset the environment, set the board to a clean board and the start player to be player 1.
env.reset()
state = env.board
player = MCTSBot(env, 'a', num_simulations) # player_index = 0, player = 1
# Set player 1 to move first.
player_index = 0
while not env.get_done_reward()[0]:
"""
Overview:
The two players take turns to make moves, and the time required for each decision is recorded.
"""
# Set mcts_bot to be player 1.
if player_index == 0:
t1 = time.time()
# action = env.mcts_bot()
action = player.get_actions(state, player_index=player_index, best_action_type = "most_visit")
t2 = time.time()
# print("The time difference is :", t2-t1)
# mcts_bot_time_list.append(t2 - t1)
mcts_bot_time_list.append(t2 - t1)
player_index = 1
# Set alpha_beta_bot to be player 2.
else:
t1 = time.time()
action = env.bot_action_alpha_beta_pruning()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
alphabeta_pruning_time_list.append(t2 - t1)
player_index = 0
env.step(action)
state = env.board
# Print the result of the game.
if env.get_done_reward()[0]:
print(state)
# Record the winner.
winner.append(env.get_done_winner()[1])
# Calculate the variance and mean of decision times.
alphabeta_pruning_mu = np.mean(alphabeta_pruning_time_list)
alphabeta_pruning_var = np.var(alphabeta_pruning_time_list)
mcts_bot_mu = np.mean(mcts_bot_time_list)
mcts_bot_var = np.var(mcts_bot_time_list)
# Print the information of the games.
print('num_simulations={}\n'.format(num_simulations))
print('alphabeta_pruning_time_list={}\n'.format(alphabeta_pruning_time_list))
print('alphabeta_pruning_mu={}, alphabeta_pruning_var={}\n'.format(alphabeta_pruning_mu, alphabeta_pruning_var))
print('mcts_bot_time_list={}\n'.format(mcts_bot_time_list))
print('mcts_bot_mu={}, bot_action_var={}\n'.format(mcts_bot_mu, mcts_bot_var))
print(
'winner={}, draw={}, player1={}, player2={}\n'.format(
winner, winner.count(-1), winner.count(1), winner.count(2)
)
)
cfg_gomoku = dict(
board_size=5,
battle_mode='self_play_mode',
bot_action_type='v0', # {'v0', 'alpha_beta_pruning'}
agent_vs_human=False,
prob_random_agent=0,
channel_last=True,
scale=True,
prob_random_action_in_bot=0.,
check_action_to_connect4_in_bot_v0=False,
)
def test_gomoku_mcts_bot_vs_rule_bot_v0_bot(num_simulations=50):
"""
Overview:
A tictactoe game between mcts_bot and rule_bot, where rule_bot take the first move.
Arguments:
- num_simulations (:obj:`int`): The number of the simulations required to find the best move.
"""
# List to record the time required for each decision round and the winner.
mcts_bot_time_list = []
bot_action_time_list = []
winner = []
# Repeat the game for 10 rounds.
for i in range(10):
print('-' * 10 + str(i) + '-' * 10)
# Initialize the game, where there are two players: player 1 and player 2.
env = GomokuEnv(EasyDict(cfg_gomoku))
# Reset the environment, set the board to a clean board and the start player to be player 1.
env.reset()
state = env.board
player = MCTSBot(env, 'a', num_simulations) # player_index = 0, player = 1
# Set player 1 to move first.
player_index = 0
while not env.get_done_reward()[0]:
"""
Overview:
The two players take turns to make moves, and the time required for each decision is recorded.
"""
# Set rule_bot to be player 1.
if player_index == 0:
t1 = time.time()
action = env.bot_action()
# action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
mcts_bot_time_list.append(t2 - t1)
player_index = 1
# Set mcts_bot to be player 2.
else:
t1 = time.time()
# action = env.bot_action()
action = player.get_actions(state, player_index=player_index)
t2 = time.time()
# print("The time difference is :", t2-t1)
bot_action_time_list.append(t2 - t1)
player_index = 0
env.step(action)
state = env.board
# Print the result of the game.
if env.get_done_reward()[0]:
print(state)
# Record the winner.
winner.append(env.get_done_winner()[1])
# Calculate the variance and mean of decision times.
mcts_bot_mu = np.mean(mcts_bot_time_list)
mcts_bot_var = np.var(mcts_bot_time_list)
bot_action_mu = np.mean(bot_action_time_list)
bot_action_var = np.var(bot_action_time_list)
# Print the information of the games.
print('num_simulations={}\n'.format(num_simulations))
print('mcts_bot_time_list={}\n'.format(mcts_bot_time_list))
print('mcts_bot_mu={}, mcts_bot_var={}\n'.format(mcts_bot_mu, mcts_bot_var))
print('bot_action_time_list={}\n'.format(bot_action_time_list))
print('bot_action_mu={}, bot_action_var={}\n'.format(bot_action_mu, bot_action_var))
print(
'winner={}, draw={}, player1={}, player2={}\n'.format(
winner, winner.count(-1), winner.count(1), winner.count(2)
)
)
if __name__ == '__main__':
# ==============================================================
# test win rate between alphabeta_bot and rule_bot_v0
# ==============================================================
# test_tictactoe_alphabeta_bot_vs_rule_bot_v0_bot()
# test_tictactoe_rule_bot_v0_bot_vs_alphabeta_bot()
# ==============================================================
# test win rate between alphabeta_bot and mcts_bot
# ==============================================================
# test_tictactoe_alphabeta_bot_vs_mcts_bot(num_simulations=2000)
# test_tictactoe_mcts_bot_vs_alphabeta_bot(num_simulations=2000)
# ==============================================================
# test win rate between mcts_bot and rule_bot_v0
# ==============================================================
test_tictactoe_mcts_bot_vs_rule_bot_v0_bot(num_simulations=50)
# test_tictactoe_mcts_bot_vs_rule_bot_v0_bot(num_simulations=500)
# test_tictactoe_mcts_bot_vs_rule_bot_v0_bot(num_simulations=1000)
# test_gomoku_mcts_bot_vs_rule_bot_v0_bot(num_simulations=1000)
|