File size: 7,802 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import copy
import os
from datetime import datetime
from itertools import product

import gymnasium as gym
import numpy as np
from ding.envs import BaseEnvTimestep
from ding.envs.common import affine_transform
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from easydict import EasyDict

from zoo.box2d.bipedalwalker.envs.bipedalwalker_env import BipedalWalkerEnv


@ENV_REGISTRY.register('bipedalwalker_cont_disc')
class BipedalWalkerDiscEnv(BipedalWalkerEnv):
    """
    Overview:
        The modified BipedalWalker environment with manually discretized action space. For each dimension, equally dividing the
        original continuous action into ``each_dim_disc_size`` bins and using their Cartesian product to obtain
        handcrafted discrete actions.
    """

    @classmethod
    def default_config(cls: type) -> EasyDict:
        """
        Overview:
            Get the default configuration of the BipedalWalker environment.
        Returns:
            - cfg (:obj:`EasyDict`): Default configuration dictionary.
        """
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    config = dict(
        # (str) The gym environment name.
        env_name="BipedalWalker-v3",
        # (int) The number of bins for each dimension of the action space.
        each_dim_disc_size=4,
        # (bool) If True, save the replay as a gif file.
        save_replay_gif=False,
        # (str or None) The path to save the replay gif. If None, the replay gif will not be saved.
        replay_path_gif=None,
        # (str or None) The path to save the replay. If None, the replay will not be saved.
        replay_path=None,
        # (bool) If True, the action will be scaled.
        act_scale=True,
        # (bool) If True, the reward will be clipped to [-10, +inf].
        rew_clip=True,
        # (int) The maximum number of steps for each episode during collection.
        collect_max_episode_steps=int(1.08e5),
        # (int) The maximum number of steps for each episode during evaluation.
        eval_max_episode_steps=int(1.08e5),
    )

    def __init__(self, cfg: dict) -> None:
        """
        Overview:
            Initialize the BipedalWalker environment with the given config dictionary.
        Arguments:
            - cfg (:obj:`dict`): Configuration dictionary.
        """
        self._cfg = cfg
        self._init_flag = False
        self._env_name = cfg.env_name
        self._act_scale = cfg.act_scale
        self._rew_clip = cfg.rew_clip
        self._replay_path = cfg.replay_path
        self._replay_path_gif = cfg.replay_path_gif
        self._save_replay_gif = cfg.save_replay_gif
        self._save_replay_count = 0

    def reset(self) -> np.ndarray:
        """
        Overview:
            Reset the environment. During the reset phase, the original environment will be created,
            and at the same time, the action space will be discretized into "each_dim_disc_size" bins.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): Including observation, action_mask, and to_play label.
        """
        if not self._init_flag:
            self._env = gym.make('BipedalWalker-v3', hardcore=True, render_mode="rgb_array")
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )
            self._init_flag = True
        if self._replay_path is not None:
            timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
            video_name = f'{self._env.spec.id}-video-{timestamp}'
            self._env = gym.wrappers.RecordVideo(
                self._env,
                video_folder=self._replay_path,
                episode_trigger=lambda episode_id: True,
                name_prefix=video_name
            )
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._seed = self._seed + np_seed
            obs, _ = self._env.reset(seed=self._seed)  # using the reset method of Gymnasium env
        elif hasattr(self, '_seed'):
            obs, _ = self._env.reset(seed=self._seed)
        else:
            obs, _ = self._env.reset()
        obs = to_ndarray(obs).astype(np.float32)
        self._eval_episode_return = 0
        if self._save_replay_gif:
            self._frames = []
        # disc_to_cont: transform discrete action index to original continuous action
        self._raw_action_space = self._env.action_space
        self.m = self._raw_action_space.shape[0]
        self.n = self._cfg.each_dim_disc_size
        self.K = self.n ** self.m
        self.disc_to_cont = list(product(*[list(range(self.n)) for _ in range(self.m)]))
        # the modified discrete action space
        self._action_space = gym.spaces.Discrete(self.K)

        action_mask = np.ones(self.K, 'int8')
        obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
        return obs

    def step(self, action: np.ndarray) -> BaseEnvTimestep:
        """
        Overview:
            Take an action in the environment. During the step phase, the environment first converts the discrete action into a continuous action,
            and then passes it into the original environment.
        Arguments:
            - action (:obj:`np.ndarray`): Discrete action to be taken in the environment.
        Returns:
            - BaseEnvTimestep (:obj:`BaseEnvTimestep`): A tuple containing observation, reward, done, and info.
        """
        # disc_to_cont: transform discrete action index to original continuous action
        action = [-1 + 2 / self.n * k for k in self.disc_to_cont[int(action)]]
        action = to_ndarray(action)
        if action.shape == (1, ):
            action = action.squeeze()
        if self._act_scale:
            action = affine_transform(action, min_val=self._raw_action_space.low, max_val=self._raw_action_space.high)
        if self._save_replay_gif:
            self._frames.append(self._env.render())
        obs, rew, terminated, truncated, info = self._env.step(action)
        done = terminated or truncated

        action_mask = np.ones(self.K, 'int8')
        obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
        self._eval_episode_return += rew
        if self._rew_clip:
            rew = max(-10, rew)
        rew = np.float32(rew)
        if done:
            info['eval_episode_return'] = self._eval_episode_return
            if self._save_replay_gif:
                if not os.path.exists(self._replay_path_gif):
                    os.makedirs(self._replay_path_gif)
                timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
                path = os.path.join(
                    self._replay_path_gif,
                    '{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp)
                )
                self.display_frames_as_gif(self._frames, path)
                print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!')
                self._save_replay_count += 1
        obs = to_ndarray(obs)
        rew = to_ndarray([rew])
        return BaseEnvTimestep(obs, rew, done, info)

    def __repr__(self) -> str:
        """
        Overview:
            Represent the environment instance as a string.
        Returns:
            - repr_str (:obj:`str`): Representation string of the environment instance.
        """
        return "LightZero BipedalWalker Env (with manually discretized action space)"