File size: 9,158 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import copy
import os
from datetime import datetime
from typing import List, Optional, Dict

import gymnasium as gym
import numpy as np
from ding.envs import BaseEnvTimestep
from ding.envs import ObsPlusPrevActRewWrapper
from ding.envs.common import affine_transform
from ding.torch_utils import to_ndarray
from ding.utils import ENV_REGISTRY
from easydict import EasyDict

from zoo.classic_control.cartpole.envs.cartpole_lightzero_env import CartPoleEnv


@ENV_REGISTRY.register('lunarlander')
class LunarLanderEnv(CartPoleEnv):
    """
    Overview:
        The LunarLander Environment class for LightZero algo.. This class is a wrapper of the gym LunarLander environment, with additional
        functionalities like replay saving and seed setting. The class is registered in ENV_REGISTRY with the key 'lunarlander'.
    """

    config = dict(
        # (str) The gym environment name.
        env_name="LunarLander-v2",
        # (bool) If True, save the replay as a gif file.
        save_replay_gif=False,
        # (str or None) The path to save the replay gif. If None, the replay gif will not be saved.
        replay_path_gif=None,
        # replay_path (str or None): The path to save the replay video. If None, the replay will not be saved.
        # Only effective when env_manager.type is 'base'.
        replay_path=None,
        # (bool) If True, the action will be scaled.
        act_scale=True,
        # (int) The maximum number of steps for each episode during collection.
        collect_max_episode_steps=int(1.08e5),
        # (int) The maximum number of steps for each episode during evaluation.
        eval_max_episode_steps=int(1.08e5),
    )

    @classmethod
    def default_config(cls: type) -> EasyDict:
        """
        Overview:
            Return the default configuration of the class.
        Returns:
            - cfg (:obj:`EasyDict`): Default configuration dict.
        """
        cfg = EasyDict(copy.deepcopy(cls.config))
        cfg.cfg_type = cls.__name__ + 'Dict'
        return cfg

    def __init__(self, cfg: dict) -> None:
        """
        Overview:
            Initialize the LunarLander environment.
        Arguments:
            - cfg (:obj:`dict`): Configuration dict. The dict should include keys like 'env_name', 'replay_path', etc.
        """
        self._cfg = cfg
        self._init_flag = False
        # env_name options = {'LunarLander-v2', 'LunarLanderContinuous-v2'}
        self._env_name = cfg.env_name
        self._replay_path = cfg.replay_path
        self._replay_path_gif = cfg.replay_path_gif
        self._save_replay_gif = cfg.save_replay_gif
        self._save_replay_count = 0
        if 'Continuous' in self._env_name:
            self._act_scale = cfg.act_scale  # act_scale only works in continuous env
        else:
            self._act_scale = False

    def reset(self) -> Dict[str, np.ndarray]:
        """
        Overview:
            Reset the environment and return the initial observation.
        Returns:
            - obs (:obj:`np.ndarray`): The initial observation after resetting.
        """
        if not self._init_flag:
            self._env = gym.make(self._cfg.env_name, render_mode="rgb_array")
            if self._replay_path is not None:
                timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
                video_name = f'{self._env.spec.id}-video-{timestamp}'
                self._env = gym.wrappers.RecordVideo(
                    self._env,
                    video_folder=self._replay_path,
                    episode_trigger=lambda episode_id: True,
                    name_prefix=video_name
                )
            if hasattr(self._cfg, 'obs_plus_prev_action_reward') and self._cfg.obs_plus_prev_action_reward:
                self._env = ObsPlusPrevActRewWrapper(self._env)
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1,), dtype=np.float32
            )
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._seed = self._seed + np_seed
            obs, _ = self._env.reset(seed=self._seed)  # using the reset method of Gymnasium env
        elif hasattr(self, '_seed'):
            obs, _ = self._env.reset(seed=self._seed)
        else:
            obs, _ = self._env.reset()
        obs = to_ndarray(obs)
        self._eval_episode_return = 0.
        if self._save_replay_gif:
            self._frames = []
        if 'Continuous' not in self._env_name:
            action_mask = np.ones(4, 'int8')
            obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
        else:
            action_mask = None
            obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
        return obs

    def step(self, action: np.ndarray) -> BaseEnvTimestep:
        """
        Overview:
            Take a step in the environment with the given action.
        Arguments:
            - action (:obj:`np.ndarray`): The action to be taken.
        Returns:
            - timestep (:obj:`BaseEnvTimestep`): The timestep information including observation, reward, done flag, and info.
        """
        if action.shape == (1,):
            action = action.item()  # 0-dim array
        if self._act_scale:
            action = affine_transform(action, min_val=-1, max_val=1)
        if self._save_replay_gif:
            self._frames.append(self._env.render())

        obs, rew, terminated, truncated, info = self._env.step(action)
        done = terminated or truncated
        if 'Continuous' not in self._env_name:
            action_mask = np.ones(4, 'int8')
            # TODO: test the performance of varied_action_space.
            # action_mask[0] = 0
            obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
        else:
            action_mask = None
            obs = {'observation': obs, 'action_mask': action_mask, 'to_play': -1}
        self._eval_episode_return += rew
        if done:
            info['eval_episode_return'] = self._eval_episode_return
            if self._save_replay_gif:
                if not os.path.exists(self._replay_path_gif):
                    os.makedirs(self._replay_path_gif)
                timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
                path = os.path.join(
                    self._replay_path_gif,
                    '{}_episode_{}_seed{}_{}.gif'.format(self._env_name, self._save_replay_count, self._seed, timestamp)
                )
                self.display_frames_as_gif(self._frames, path)
                print(f'save episode {self._save_replay_count} in {self._replay_path_gif}!')
                self._save_replay_count += 1
        obs = to_ndarray(obs)
        rew = to_ndarray([rew]).astype(np.float32)  # wrapped to be transferred to a array with shape (1,)
        return BaseEnvTimestep(obs, rew, done, info)

    @property
    def legal_actions(self) -> np.ndarray:
        """
        Overview:
            Get the legal actions in the environment.
        Returns:
            - legal_actions (:obj:`np.ndarray`): An array of legal actions.
        """
        return np.arange(self._action_space.n)

    @staticmethod
    def display_frames_as_gif(frames: list, path: str) -> None:
        import imageio
        imageio.mimsave(path, frames, fps=20)

    def random_action(self) -> np.ndarray:
        random_action = self.action_space.sample()
        if isinstance(random_action, np.ndarray):
            pass
        elif isinstance(random_action, int):
            random_action = to_ndarray([random_action], dtype=np.int64)
        return random_action

    def __repr__(self) -> str:
        return "LightZero LunarLander Env."

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        """
        Overview:
            Create a list of environment configurations for the collector.
        Arguments:
            - cfg (:obj:`dict`): The base configuration dict.
        Returns:
            - cfgs (:obj:`List[dict]`): The list of environment configurations.
        """
        collector_env_num = cfg.pop('collector_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.max_episode_steps = cfg.collect_max_episode_steps
        return [cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        """
        Overview:
            Create a list of environment configurations for the evaluator.
        Arguments:
            - cfg (:obj:`dict`): The base configuration dict.
        Returns:
            - cfgs (:obj:`List[dict]`): The list of environment configurations.
        """
        evaluator_env_num = cfg.pop('evaluator_env_num')
        cfg = copy.deepcopy(cfg)
        cfg.max_episode_steps = cfg.eval_max_episode_steps
        return [cfg for _ in range(evaluator_env_num)]