File size: 41,962 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 |
from typing import Optional, Tuple
import math
import torch
import torch.nn as nn
from ding.torch_utils import MLP, ResBlock
from ding.utils import MODEL_REGISTRY, SequenceType
from .common import MZNetworkOutput, RepresentationNetwork, PredictionNetwork
from .utils import renormalize, get_params_mean, get_dynamic_mean, get_reward_mean
# use ModelRegistry to register the model, for more details about ModelRegistry, please refer to DI-engine's document.
@MODEL_REGISTRY.register('StochasticMuZeroModel')
class StochasticMuZeroModel(nn.Module):
def __init__(
self,
observation_shape: SequenceType = (12, 96, 96),
action_space_size: int = 6,
chance_space_size: int = 2,
num_res_blocks: int = 1,
num_channels: int = 64,
reward_head_channels: int = 16,
value_head_channels: int = 16,
policy_head_channels: int = 16,
fc_reward_layers: SequenceType = [32],
fc_value_layers: SequenceType = [32],
fc_policy_layers: SequenceType = [32],
reward_support_size: int = 601,
value_support_size: int = 601,
proj_hid: int = 1024,
proj_out: int = 1024,
pred_hid: int = 512,
pred_out: int = 1024,
self_supervised_learning_loss: bool = False,
categorical_distribution: bool = True,
activation: nn.Module = nn.ReLU(inplace=True),
last_linear_layer_init_zero: bool = True,
state_norm: bool = False,
downsample: bool = False,
*args,
**kwargs
):
"""
Overview:
The definition of the neural network model used in Stochastic MuZero,
which is proposed in the paper https://openreview.net/pdf?id=X6D9bAHhBQ1.
Stochastic MuZero model consists of a representation network, a dynamics network and a prediction network.
The networks are built on convolution residual blocks and fully connected layers.
Arguments:
- observation_shape (:obj:`SequenceType`): Observation space shape, e.g. [C, W, H]=[12, 96, 96] for Atari.
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space.
- chance_space_size: (:obj:`int`): Chance space size, the action space for decision node, usually an integer
number for discrete action space.
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
- num_channels (:obj:`int`): The channels of hidden states.
- reward_head_channels (:obj:`int`): The channels of reward head.
- value_head_channels (:obj:`int`): The channels of value head.
- policy_head_channels (:obj:`int`): The channels of policy head.
- fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
- reward_support_size (:obj:`int`): The size of categorical reward output
- value_support_size (:obj:`int`): The size of categorical value output.
- proj_hid (:obj:`int`): The size of projection hidden layer.
- proj_out (:obj:`int`): The size of projection output layer.
- pred_hid (:obj:`int`): The size of prediction hidden layer.
- pred_out (:obj:`int`): The size of prediction output layer.
- self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks \
in Stochastic MuZero model, default set it to False.
- categorical_distribution (:obj:`bool`): Whether to use discrete support to represent categorical \
distribution for value and reward.
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
operation to speedup, e.g. ReLU(inplace=True).
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initialization for the last layer of \
dynamics/prediction mlp, default set it to True.
- state_norm (:obj:`bool`): Whether to use normalization for hidden states, default set it to False.
- downsample (:obj:`bool`): Whether to do downsampling for observations in ``representation_network``, \
defaults to True. This option is often used in video games like Atari. In board games like go, \
we don't need this module.
"""
super(StochasticMuZeroModel, self).__init__()
self.categorical_distribution = categorical_distribution
if self.categorical_distribution:
self.reward_support_size = reward_support_size
self.value_support_size = value_support_size
else:
self.reward_support_size = 1
self.value_support_size = 1
self.action_space_size = action_space_size
self.chance_space_size = chance_space_size
self.proj_hid = proj_hid
self.proj_out = proj_out
self.pred_hid = pred_hid
self.pred_out = pred_out
self.self_supervised_learning_loss = self_supervised_learning_loss
self.last_linear_layer_init_zero = last_linear_layer_init_zero
self.state_norm = state_norm
self.downsample = downsample
flatten_output_size_for_reward_head = (
(reward_head_channels * math.ceil(observation_shape[1] / 16) *
math.ceil(observation_shape[2] / 16)) if downsample else
(reward_head_channels * observation_shape[1] * observation_shape[2])
)
flatten_output_size_for_value_head = (
(value_head_channels * math.ceil(observation_shape[1] / 16) *
math.ceil(observation_shape[2] / 16)) if downsample else
(value_head_channels * observation_shape[1] * observation_shape[2])
)
flatten_output_size_for_policy_head = (
(policy_head_channels * math.ceil(observation_shape[1] / 16) *
math.ceil(observation_shape[2] / 16)) if downsample else
(policy_head_channels * observation_shape[1] * observation_shape[2])
)
self.representation_network = RepresentationNetwork(
observation_shape,
num_res_blocks,
num_channels,
downsample,
)
self.chance_encoder = ChanceEncoder(
observation_shape, chance_space_size
)
self.dynamics_network = DynamicsNetwork(
num_res_blocks,
num_channels + 1,
reward_head_channels,
fc_reward_layers,
self.reward_support_size,
flatten_output_size_for_reward_head,
last_linear_layer_init_zero=self.last_linear_layer_init_zero,
)
self.prediction_network = PredictionNetwork(
observation_shape,
action_space_size,
num_res_blocks,
num_channels,
value_head_channels,
policy_head_channels,
fc_value_layers,
fc_policy_layers,
self.value_support_size,
flatten_output_size_for_value_head,
flatten_output_size_for_policy_head,
last_linear_layer_init_zero=self.last_linear_layer_init_zero,
)
self.afterstate_dynamics_network = AfterstateDynamicsNetwork(
num_res_blocks,
num_channels + 1,
reward_head_channels,
fc_reward_layers,
self.reward_support_size,
flatten_output_size_for_reward_head,
last_linear_layer_init_zero=self.last_linear_layer_init_zero,
)
self.afterstate_prediction_network = AfterstatePredictionNetwork(
chance_space_size,
num_res_blocks,
num_channels,
value_head_channels,
policy_head_channels,
fc_value_layers,
fc_policy_layers,
self.value_support_size,
flatten_output_size_for_value_head,
flatten_output_size_for_policy_head,
last_linear_layer_init_zero=self.last_linear_layer_init_zero,
)
if self.self_supervised_learning_loss:
# projection used in EfficientZero
if self.downsample:
# In Atari, if the observation_shape is set to (12, 96, 96), which indicates the original shape of
# (3,96,96), and frame_stack_num is 4. Due to downsample, the encoding of observation (latent_state) is
# (64, 96/16, 96/16), where 64 is the number of channels, 96/16 is the size of the latent state. Thus,
# self.projection_input_dim = 64 * 96/16 * 96/16 = 64*6*6 = 2304
ceil_size = math.ceil(observation_shape[1] / 16) * math.ceil(observation_shape[2] / 16)
self.projection_input_dim = num_channels * ceil_size
else:
self.projection_input_dim = num_channels * observation_shape[1] * observation_shape[2]
self.projection = nn.Sequential(
nn.Linear(self.projection_input_dim, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
nn.Linear(self.proj_hid, self.proj_hid), nn.BatchNorm1d(self.proj_hid), activation,
nn.Linear(self.proj_hid, self.proj_out), nn.BatchNorm1d(self.proj_out)
)
self.prediction_head = nn.Sequential(
nn.Linear(self.proj_out, self.pred_hid),
nn.BatchNorm1d(self.pred_hid),
activation,
nn.Linear(self.pred_hid, self.pred_out),
)
def initial_inference(self, obs: torch.Tensor) -> MZNetworkOutput:
"""
Overview:
Initial inference of Stochastic MuZero model, which is the first step of the Stochastic MuZero model.
To perform the initial inference, we first use the representation network to obtain the ``latent_state``.
Then we use the prediction network to predict ``value`` and ``policy_logits`` of the ``latent_state``.
Arguments:
- obs (:obj:`torch.Tensor`): The 2D image observation data.
Returns (MZNetworkOutput):
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
- reward (:obj:`torch.Tensor`): The predicted reward of input state and selected action. \
In initial inference, we set it to zero vector.
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
- reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
"""
batch_size = obs.size(0)
latent_state = self._representation(obs)
policy_logits, value = self._prediction(latent_state)
return MZNetworkOutput(
value,
[0. for _ in range(batch_size)],
policy_logits,
latent_state,
)
def recurrent_inference(self, state: torch.Tensor, option: torch.Tensor,
afterstate: bool = False) -> MZNetworkOutput:
"""
Overview:
Recurrent inference of Stochastic MuZero model, which is the rollout step of the Stochastic MuZero model.
To perform the recurrent inference, we first use the dynamics network to predict ``next_latent_state``,
``reward``, by the given current ``latent_state`` and ``action``.
We then use the prediction network to predict the ``value`` and ``policy_logits`` of the current
``latent_state``.
Arguments:
- state (:obj:`torch.Tensor`): The encoding latent state of input state or the afterstate.
- option (:obj:`torch.Tensor`): The action to rollout or the chance to predict next latent state.
- afterstate (:obj:`bool`): Whether to use afterstate prediction network to predict next latent state.
Returns (MZNetworkOutput):
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
- reward (:obj:`torch.Tensor`): The predicted reward of input state and selected action.
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
- next_latent_state (:obj:`torch.Tensor`): The predicted next latent state.
Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
- reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
"""
if afterstate:
# state is afterstate, option is chance
next_latent_state, reward = self._dynamics(state, option)
policy_logits, value = self._prediction(next_latent_state)
return MZNetworkOutput(value, reward, policy_logits, next_latent_state)
else:
# state is latent_state, option is action
next_afterstate, reward = self._afterstate_dynamics(state, option)
policy_logits, value = self._afterstate_prediction(next_afterstate)
return MZNetworkOutput(value, reward, policy_logits, next_afterstate)
def _representation(self, observation: torch.Tensor) -> torch.Tensor:
"""
Overview:
Use the representation network to encode the observations into latent state.
Arguments:
- obs (:obj:`torch.Tensor`): The 2D image observation data.
Returns:
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
Shapes:
- obs (:obj:`torch.Tensor`): :math:`(B, num_channel, obs_shape[1], obs_shape[2])`, where B is batch_size.
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
"""
latent_state = self.representation_network(observation)
if self.state_norm:
latent_state = renormalize(latent_state)
return latent_state
def chance_encode(self, observation: torch.Tensor):
output = self.chance_encoder(observation)
return output
def _prediction(self, latent_state: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Use the prediction network to predict ``policy_logits`` and ``value``.
Arguments:
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
Returns:
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
Shapes:
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
"""
return self.prediction_network(latent_state)
def _afterstate_prediction(self, afterstate: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Use the prediction network to predict ``policy_logits`` and ``value``.
Arguments:
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
Returns:
- policy_logits (:obj:`torch.Tensor`): The output logit to select discrete action.
- value (:obj:`torch.Tensor`): The output value of input state to help policy improvement and evaluation.
Shapes:
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- policy_logits (:obj:`torch.Tensor`): :math:`(B, action_dim)`, where B is batch_size.
- value (:obj:`torch.Tensor`): :math:`(B, value_support_size)`, where B is batch_size.
"""
return self.afterstate_prediction_network(afterstate)
def _dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state``
and ``reward``.
Arguments:
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
- action (:obj:`torch.Tensor`): The predicted action to rollout.
Returns:
- next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
- reward (:obj:`torch.Tensor`): The predicted reward of the current latent state and selected action.
Shapes:
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
"""
# NOTE: the discrete action encoding type is important for some environments
# discrete action space
# the final action_encoding shape is (batch_size, 1, latent_state[2], latent_state[3]), e.g. (8, 1, 4, 1).
action_encoding = (
torch.ones((
latent_state.shape[0],
1,
latent_state.shape[2],
latent_state.shape[3],
)).to(action.device).float()
)
if len(action.shape) == 2:
# (batch_size, action_dim) -> (batch_size, action_dim, 1)
# e.g., torch.Size([8, 1]) -> torch.Size([8, 1, 1])
action = action.unsqueeze(-1)
elif len(action.shape) == 1:
# (batch_size,) -> (batch_size, action_dim=1, 1)
# e.g., -> torch.Size([8, 1]) -> torch.Size([8, 1, 1])
action = action.unsqueeze(-1).unsqueeze(-1)
# action[:, 0, None, None] shape: (batch_size, action_dim, 1, 1) e.g. (8, 1, 1, 1)
# the final action_encoding shape: (batch_size, 1, latent_state[2], latent_state[3]) e.g. (8, 1, 4, 1),
# where each element is normalized as action[i]/action_space_size
action_encoding = (action[:, 0, None, None] * action_encoding / self.chance_space_size)
# state_action_encoding shape: (batch_size, latent_state[1] + 1, latent_state[2], latent_state[3])
state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)
next_latent_state, reward = self.dynamics_network(state_action_encoding)
if self.state_norm:
next_latent_state = renormalize(next_latent_state)
return next_latent_state, reward
def _afterstate_dynamics(self, latent_state: torch.Tensor, action: torch.Tensor) -> Tuple[
torch.Tensor, torch.Tensor]:
"""
Overview:
Concatenate ``latent_state`` and ``action`` and use the dynamics network to predict ``next_latent_state``
and ``reward``.
Arguments:
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
- action (:obj:`torch.Tensor`): The predicted action to rollout.
Returns:
- next_latent_state (:obj:`torch.Tensor`): The predicted latent state of the next timestep.
- reward (:obj:`torch.Tensor`): The predicted reward of the current latent state and selected action.
Shapes:
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- action (:obj:`torch.Tensor`): :math:`(B, )`, where B is batch_size.
- next_latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- reward (:obj:`torch.Tensor`): :math:`(B, reward_support_size)`, where B is batch_size.
"""
# NOTE: the discrete action encoding type is important for some environments
# discrete action space
# the final action_encoding shape is (batch_size, 1, latent_state[2], latent_state[3]), e.g. (8, 1, 4, 1).
action_encoding = (
torch.ones((
latent_state.shape[0],
1,
latent_state.shape[2],
latent_state.shape[3],
)).to(action.device).float()
)
if len(action.shape) == 2:
# (batch_size, action_dim) -> (batch_size, action_dim, 1)
# e.g., torch.Size([8, 1]) -> torch.Size([8, 1, 1])
action = action.unsqueeze(-1)
elif len(action.shape) == 1:
# (batch_size,) -> (batch_size, action_dim=1, 1)
# e.g., -> torch.Size([8, 1]) -> torch.Size([8, 1, 1])
action = action.unsqueeze(-1).unsqueeze(-1)
# action[:, 0, None, None] shape: (batch_size, action_dim, 1, 1) e.g. (8, 1, 1, 1)
# the final action_encoding shape: (batch_size, 1, latent_state[2], latent_state[3]) e.g. (8, 1, 4, 1),
# where each element is normalized as action[i]/action_space_size
action_encoding = (action[:, 0, None, None] * action_encoding / self.action_space_size)
# state_action_encoding shape: (batch_size, latent_state[1] + 1, latent_state[2], latent_state[3])
state_action_encoding = torch.cat((latent_state, action_encoding), dim=1)
next_latent_state, reward = self.afterstate_dynamics_network(state_action_encoding)
if self.state_norm:
next_latent_state = renormalize(next_latent_state)
return next_latent_state, reward
def project(self, latent_state: torch.Tensor, with_grad: bool = True) -> torch.Tensor:
"""
Overview:
Project the latent state to a lower dimension to calculate the self-supervised loss, which is involved in
in EfficientZero.
For more details, please refer to paper ``Exploring Simple Siamese Representation Learning``.
Arguments:
- latent_state (:obj:`torch.Tensor`): The encoding latent state of input state.
- with_grad (:obj:`bool`): Whether to calculate gradient for the projection result.
Returns:
- proj (:obj:`torch.Tensor`): The result embedding vector of projection operation.
Shapes:
- latent_state (:obj:`torch.Tensor`): :math:`(B, H_, W_)`, where B is batch_size, H_ is the height of \
latent state, W_ is the width of latent state.
- proj (:obj:`torch.Tensor`): :math:`(B, projection_output_dim)`, where B is batch_size.
Examples:
>>> latent_state = torch.randn(256, 64, 6, 6)
>>> output = self.project(latent_state)
>>> output.shape # (256, 1024)
.. note::
for Atari:
observation_shape = (12, 96, 96), # original shape is (3,96,96), frame_stack_num=4
if downsample is True, latent_state.shape: (batch_size, num_channel, obs_shape[1] / 16, obs_shape[2] / 16)
i.e., (256, 64, 96 / 16, 96 / 16) = (256, 64, 6, 6)
latent_state reshape: (256, 64, 6, 6) -> (256,64*6*6) = (256, 2304)
# self.projection_input_dim = 64*6*6 = 2304
# self.projection_output_dim = 1024
"""
latent_state = latent_state.reshape(latent_state.shape[0], -1)
proj = self.projection(latent_state)
if with_grad:
# with grad, use prediction_head
return self.prediction_head(proj)
else:
return proj.detach()
def get_params_mean(self) -> float:
return get_params_mean(self)
class DynamicsNetwork(nn.Module):
def __init__(
self,
num_res_blocks: int,
num_channels: int,
reward_head_channels: int,
fc_reward_layers: SequenceType,
output_support_size: int,
flatten_output_size_for_reward_head: int,
last_linear_layer_init_zero: bool = True,
activation: Optional[nn.Module] = nn.ReLU(inplace=True),
):
"""
Overview:
The definition of dynamics network in Stochastic MuZero algorithm, which is used to predict next latent state and
reward given current latent state and action.
Arguments:
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
- num_channels (:obj:`int`): The channels of input, including obs and action encoding.
- reward_head_channels (:obj:`int`): The channels of reward head.
- fc_reward_layers (:obj:`SequenceType`): The number of hidden layers of the reward head (MLP head).
- output_support_size (:obj:`int`): The size of categorical reward output.
- flatten_output_size_for_reward_head (:obj:`int`): The flatten size of output for reward head, i.e., \
the input size of reward head.
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initialization for the last layer of \
reward mlp, default set it to True.
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
operation to speedup, e.g. ReLU(inplace=True).
"""
super().__init__()
self.num_channels = num_channels
self.flatten_output_size_for_reward_head = flatten_output_size_for_reward_head
self.conv = nn.Conv2d(num_channels, num_channels - 1, kernel_size=3, stride=1, padding=1, bias=False)
self.bn = nn.BatchNorm2d(num_channels - 1)
self.resblocks = nn.ModuleList(
[
ResBlock(
in_channels=num_channels - 1, activation=activation, norm_type='BN', res_type='basic', bias=False
) for _ in range(num_res_blocks)
]
)
self.conv1x1_reward = nn.Conv2d(num_channels - 1, reward_head_channels, 1)
self.bn_reward = nn.BatchNorm2d(reward_head_channels)
self.fc_reward_head = MLP(
self.flatten_output_size_for_reward_head,
hidden_channels=fc_reward_layers[0],
layer_num=len(fc_reward_layers) + 1,
out_channels=output_support_size,
activation=activation,
norm_type='BN',
output_activation=False,
output_norm=False,
last_linear_layer_init_zero=last_linear_layer_init_zero
)
self.activation = activation
def forward(self, state_action_encoding: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Forward computation of the dynamics network. Predict next latent state given current latent state and action.
Arguments:
- state_action_encoding (:obj:`torch.Tensor`): The state-action encoding, which is the concatenation of \
latent state and action encoding, with shape (batch_size, num_channels, height, width).
Returns:
- next_latent_state (:obj:`torch.Tensor`): The next latent state, with shape (batch_size, num_channels, \
height, width).
- reward (:obj:`torch.Tensor`): The predicted reward, with shape (batch_size, output_support_size).
"""
# take the state encoding (latent_state), state_action_encoding[:, -1, :, :] is action encoding
latent_state = state_action_encoding[:, :-1, :, :]
x = self.conv(state_action_encoding)
x = self.bn(x)
# the residual link: add state encoding to the state_action encoding
x += latent_state
x = self.activation(x)
for block in self.resblocks:
x = block(x)
next_latent_state = x
x = self.conv1x1_reward(next_latent_state)
x = self.bn_reward(x)
x = self.activation(x)
x = x.view(-1, self.flatten_output_size_for_reward_head)
# use the fully connected layer to predict reward
reward = self.fc_reward_head(x)
return next_latent_state, reward
def get_dynamic_mean(self) -> float:
return get_dynamic_mean(self)
def get_reward_mean(self) -> float:
return get_reward_mean(self)
# TODO(pu): customize different afterstate dynamics network
AfterstateDynamicsNetwork = DynamicsNetwork
class AfterstatePredictionNetwork(nn.Module):
def __init__(
self,
action_space_size: int,
num_res_blocks: int,
num_channels: int,
value_head_channels: int,
policy_head_channels: int,
fc_value_layers: int,
fc_policy_layers: int,
output_support_size: int,
flatten_output_size_for_value_head: int,
flatten_output_size_for_policy_head: int,
last_linear_layer_init_zero: bool = True,
activation: nn.Module = nn.ReLU(inplace=True),
) -> None:
"""
Overview:
The definition of afterstate policy and value prediction network, which is used to predict value and policy by the
given afterstate.
Arguments:
- action_space_size: (:obj:`int`): Action space size, usually an integer number for discrete action space.
- num_res_blocks (:obj:`int`): The number of res blocks in AlphaZero model.
- num_channels (:obj:`int`): The channels of hidden states.
- value_head_channels (:obj:`int`): The channels of value head.
- policy_head_channels (:obj:`int`): The channels of policy head.
- fc_value_layers (:obj:`SequenceType`): The number of hidden layers used in value head (MLP head).
- fc_policy_layers (:obj:`SequenceType`): The number of hidden layers used in policy head (MLP head).
- output_support_size (:obj:`int`): The size of categorical value output.
- self_supervised_learning_loss (:obj:`bool`): Whether to use self_supervised_learning related networks \
- flatten_output_size_for_value_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \
of the value head.
- flatten_output_size_for_policy_head (:obj:`int`): The size of flatten hidden states, i.e. the input size \
of the policy head.
- last_linear_layer_init_zero (:obj:`bool`): Whether to use zero initialization for the last layer of \
dynamics/prediction mlp, default set it to True.
- activation (:obj:`Optional[nn.Module]`): Activation function used in network, which often use in-place \
operation to speedup, e.g. ReLU(inplace=True).
"""
super(AfterstatePredictionNetwork, self).__init__()
self.resblocks = nn.ModuleList(
[
ResBlock(in_channels=num_channels, activation=activation, norm_type='BN', res_type='basic', bias=False)
for _ in range(num_res_blocks)
]
)
self.conv1x1_value = nn.Conv2d(num_channels, value_head_channels, 1)
self.conv1x1_policy = nn.Conv2d(num_channels, policy_head_channels, 1)
self.bn_value = nn.BatchNorm2d(value_head_channels)
self.bn_policy = nn.BatchNorm2d(policy_head_channels)
self.flatten_output_size_for_value_head = flatten_output_size_for_value_head
self.flatten_output_size_for_policy_head = flatten_output_size_for_policy_head
self.activation = activation
self.fc_value = MLP(
in_channels=self.flatten_output_size_for_value_head,
hidden_channels=fc_value_layers[0],
out_channels=output_support_size,
layer_num=len(fc_value_layers) + 1,
activation=self.activation,
norm_type='BN',
output_activation=False,
output_norm=False,
last_linear_layer_init_zero=last_linear_layer_init_zero
)
self.fc_policy = MLP(
in_channels=self.flatten_output_size_for_policy_head,
hidden_channels=fc_policy_layers[0],
out_channels=action_space_size,
layer_num=len(fc_policy_layers) + 1,
activation=self.activation,
norm_type='BN',
output_activation=False,
output_norm=False,
last_linear_layer_init_zero=last_linear_layer_init_zero
)
def forward(self, afterstate: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Overview:
Forward computation of the afterstate prediction network.
Arguments:
- afterstate (:obj:`torch.Tensor`): input tensor with shape (B, afterstate_dim).
Returns:
- afterstate_policy_logits (:obj:`torch.Tensor`): policy tensor with shape (B, action_space_size).
- afterstate_value (:obj:`torch.Tensor`): value tensor with shape (B, output_support_size).
"""
for res_block in self.resblocks:
afterstate = res_block(afterstate)
value = self.conv1x1_value(afterstate)
value = self.bn_value(value)
value = self.activation(value)
policy = self.conv1x1_policy(afterstate)
policy = self.bn_policy(policy)
policy = self.activation(policy)
value = value.reshape(-1, self.flatten_output_size_for_value_head)
policy = policy.reshape(-1, self.flatten_output_size_for_policy_head)
afterstate_value = self.fc_value(value)
afterstate_policy_logits = self.fc_policy(policy)
return afterstate_policy_logits, afterstate_value
class ChanceEncoderBackbone(nn.Module):
"""
Overview:
The definition of chance encoder backbone network, \
which is used to encode the (image) observation into a latent space.
Arguments:
- input_dimensions (:obj:`tuple`): The dimension of observation space.
- chance_encoding_dim (:obj:`int`): The dimension of chance encoding.
"""
def __init__(self, input_dimensions, chance_encoding_dim=4):
super(ChanceEncoderBackbone, self).__init__()
self.conv1 = nn.Conv2d(input_dimensions[0] * 2, 32, 3, padding=1)
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.fc1 = nn.Linear(64 * input_dimensions[1] * input_dimensions[2], 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, chance_encoding_dim)
def forward(self, x):
x = torch.relu(self.conv1(x))
x = torch.relu(self.conv2(x))
x = x.view(x.shape[0], -1)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class ChanceEncoderBackboneMLP(nn.Module):
"""
Overview:
The definition of chance encoder backbone network, \
which is used to encode the (vector) observation into a latent space.
Arguments:
- input_dimensions (:obj:`tuple`): The dimension of observation space.
- chance_encoding_dim (:obj:`int`): The dimension of chance encoding.
"""
def __init__(self, input_dimensions, chance_encoding_dim=4):
super(ChanceEncoderBackboneMLP, self).__init__()
self.fc1 = nn.Linear(input_dimensions, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, chance_encoding_dim)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
class ChanceEncoder(nn.Module):
def __init__(self, input_dimensions, action_dimension, encoder_backbone_type='conv'):
super().__init__()
# Specify the action space for the model
self.action_space = action_dimension
if encoder_backbone_type == 'conv':
# Define the encoder, which transforms observations into a latent space
self.encoder = ChanceEncoderBackbone(input_dimensions, action_dimension)
elif encoder_backbone_type == 'mlp':
self.encoder = ChanceEncoderBackboneMLP(input_dimensions, action_dimension)
else:
raise ValueError('Encoder backbone type not supported')
# Using the Straight Through Estimator method for backpropagation
self.onehot_argmax = StraightThroughEstimator()
def forward(self, observations):
"""
Overview:
Forward method for the ChanceEncoder. This method takes an observation \
and applies the encoder to transform it to a latent space. Then applies the \
StraightThroughEstimator to this encoding. \
References: Planning in Stochastic Environments with a Learned Model (ICLR 2022), page 5,
Chance Outcomes section.
Arguments:
- observations (:obj:`torch.Tensor`): Observation tensor.
Returns:
- chance (:obj:`torch.Tensor`): Transformed tensor after applying one-hot argmax.
- chance_encoding (:obj:`torch.Tensor`): Encoding of the input observation tensor.
"""
# Apply the encoder to the observation
chance_encoding = self.encoder(observations)
# Apply one-hot argmax to the encoding
chance_onehot = self.onehot_argmax(chance_encoding)
return chance_encoding, chance_onehot
class StraightThroughEstimator(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
"""
Overview:
Forward method for the StraightThroughEstimator. This applies the one-hot argmax \
function to the input tensor.
Arguments:
- x (:obj:`torch.Tensor`): Input tensor.
Returns:
- (:obj:`torch.Tensor`): Transformed tensor after applying one-hot argmax.
"""
# Apply one-hot argmax to the input
x = OnehotArgmax.apply(x)
return x
class OnehotArgmax(torch.autograd.Function):
"""
Overview:
Custom PyTorch function for one-hot argmax. This function transforms the input tensor \
into a one-hot tensor where the index with the maximum value in the original tensor is \
set to 1 and all other indices are set to 0. It allows gradients to flow to the encoder \
during backpropagation.
For more information, refer to: \
https://pytorch.org/tutorials/beginner/examples_autograd/two_layer_net_custom_function.html
"""
@staticmethod
def forward(ctx, input):
"""
Overview:
Forward method for the one-hot argmax function. This method transforms the input \
tensor into a one-hot tensor.
Arguments:
- ctx (:obj:`context`): A context object that can be used to stash information for
backward computation.
- input (:obj:`torch.Tensor`): Input tensor.
Returns:
- (:obj:`torch.Tensor`): One-hot tensor.
"""
# Transform the input tensor to a one-hot tensor
return torch.zeros_like(input).scatter_(-1, torch.argmax(input, dim=-1, keepdim=True), 1.)
@staticmethod
def backward(ctx, grad_output):
"""
Overview:
Backward method for the one-hot argmax function. This method allows gradients \
to flow to the encoder during backpropagation.
Arguments:
- ctx (:obj:`context`): A context object that was stashed in the forward pass.
- grad_output (:obj:`torch.Tensor`): The gradient of the output tensor.
Returns:
- (:obj:`torch.Tensor`): The gradient of the input tensor.
"""
return grad_output
|