File size: 33,034 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 |
"""
Overview:
Adapt the connect4 environment in PettingZoo (https://github.com/Farama-Foundation/PettingZoo) to the BaseEnv interface.
Connect Four is a 2-player turn based game, where players must connect four of their tokens vertically, horizontally or diagonally.
The players drop their respective token in a column of a standing grid, where each token will fall until it reaches the bottom of the column or reaches an existing token.
Players cannot place a token in a full column, and the game ends when either a player has made a sequence of 4 tokens, or when all 7 columns have been filled.
Mode:
- ``self_play_mode``: In ``self_play_mode``, two players take turns to play. This mode is used in AlphaZero for data generating.
- ``play_with_bot_mode``: In this mode, the environment has a bot inside, which take the role of player 2. So the player may play against the bot.
Bot:
- MCTSBot: A bot which take action through a Monte Carlo Tree Search, which has a high performance.
- RuleBot: A bot which take action according to some simple settings, which has a moderate performance. Note: Currently the RuleBot can only exclude actions that would lead to losing the game within three moves.
Note: Currently the RuleBot can only exclude actions that would lead to losing the game within three moves. One possible improvement is to further enhance the bot's long-term planning capabilities.
Observation Space:
The observation in the Connect4 environment is a dictionary with five elements, which contains key information about the current state.
- observation (:obj:`array`): An array that represents information about the current state, with a shape of (3, 6, 7).
The length of the first dimension is 3, which stores three two-dimensional game boards with shapes (6, 7).
These boards represent the positions occupied by the current player, the positions occupied by the opponent player, and the identity of the current player, respectively.
- action_mask (:obj:`array`): A mask for the actions, indicating which actions are executable. It is a one-dimensional array of length 7, corresponding to columns 1 to 7 of the game board.
It has a value of 1 for the columns where a move can be made, and a value of 0 for other positions.
- board (:obj:`array`): A visual representation of the current game board, represented as a 6x7 array, in which the positions where player 1 and player 2 have placed their tokens are marked with values 1 and 2, respectively.
- current_player_index (:obj:`int`): The index of the current player, with player 1 having an index of 0 and player 2 having an index of 1.
- to_play (:obj:`int`): The player who needs to take an action in the current state, with a value of 1 or 2.
Action Space:
A set of integers from 0 to 6 (inclusive), where the action represents which column a token should be dropped in.
Reward Space:
For the ``self_play_mode``, a reward of 1 is returned at the time step when the game terminates, and a reward of 0 is returned at all other time steps.
For the ``play_with_bot_mode``, at the time step when the game terminates, if the bot wins, the reward is -1; if the agent wins, the reward is 1; and in all other cases, the reward is 0.
"""
import copy
import os
import sys
from typing import List, Any, Tuple, Optional
import imageio
import matplotlib.pyplot as plt
import numpy as np
import pygame
from ding.envs import BaseEnv, BaseEnvTimestep
from ding.utils import ENV_REGISTRY
from ditk import logging
from easydict import EasyDict
from gymnasium import spaces
from zoo.board_games.connect4.envs.rule_bot import Connect4RuleBot
from zoo.board_games.mcts_bot import MCTSBot
@ENV_REGISTRY.register('connect4')
class Connect4Env(BaseEnv):
config = dict(
# (str) The name of the environment registered in the environment registry.
env_name="Connect4",
# (str) The mode of the environment when take a step.
battle_mode='self_play_mode',
# (str) The mode of the environment when doing the MCTS.
battle_mode_in_simulation_env='self_play_mode',
# (str) The render mode. Options are 'None', 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
# If None, then the game will not be rendered.
render_mode=None,
# (str or None) The directory in which to save the replay file. If None, the file is saved in the current directory.
replay_path=None,
# (str) The type of the bot of the environment.
bot_action_type='rule',
# (bool) Whether to let human to play with the agent when evaluating. If False, then use the bot to evaluate the agent.
agent_vs_human=False,
# (float) The probability that a random agent is used instead of the learning agent.
prob_random_agent=0,
# (float) The probability that an expert agent(the bot) is used instead of the learning agent.
prob_expert_agent=0,
# (float) The probability that a random action will be taken when calling the bot.
prob_random_action_in_bot=0.,
# (float) The scale of the render screen.
screen_scaling=9,
# (bool) Whether to use the 'channel last' format for the observation space. If False, 'channel first' format is used.
channel_last=False,
# (bool) Whether to scale the observation.
scale=False,
# (float) The stop value when training the agent. If the evalue return reach the stop value, then the training will stop.
stop_value=2,
)
@classmethod
def default_config(cls: type) -> EasyDict:
cfg = EasyDict(copy.deepcopy(cls.config))
cfg.cfg_type = cls.__name__ + 'Dict'
return cfg
def __init__(self, cfg: dict = None) -> None:
# Load the config.
self.cfg = cfg
# Set the format of the observation.
self.channel_last = cfg.channel_last
self.scale = cfg.scale
# Set the parameters about replay render.
self.screen_scaling = cfg.screen_scaling
# options = {None, 'state_realtime_mode', 'image_realtime_mode', 'image_savefile_mode'}
self.render_mode = cfg.render_mode
self.replay_name_suffix = "test"
self.replay_path = cfg.replay_path
self.replay_format = 'gif'
self.screen = None
self.frames = []
# Set the mode of interaction between the agent and the environment.
# options = {'self_play_mode', 'play_with_bot_mode', 'eval_mode'}
self.battle_mode = cfg.battle_mode
assert self.battle_mode in ['self_play_mode', 'play_with_bot_mode', 'eval_mode']
# The mode of MCTS is only used in AlphaZero.
self.battle_mode_in_simulation_env = 'self_play_mode'
# In ``eval_mode``, we can choose to play with the agent.
self.agent_vs_human = cfg.agent_vs_human
# Set some randomness for selecting action.
self.prob_random_agent = cfg.prob_random_agent
self.prob_expert_agent = cfg.prob_expert_agent
assert (self.prob_random_agent >= 0 and self.prob_expert_agent == 0) or (
self.prob_random_agent == 0 and self.prob_expert_agent >= 0), \
f'self.prob_random_agent:{self.prob_random_agent}, self.prob_expert_agent:{self.prob_expert_agent}'
# The board state is saved as a one-dimensional array instead of a two-dimensional array for ease of computation in ``step()`` function.
self.board = [0] * (6 * 7)
self.players = [1, 2]
self._current_player = 1
self._env = self
# Set the bot type and add some randomness.
# options = {'rule, 'mcts'}
self.bot_action_type = cfg.bot_action_type
self.prob_random_action_in_bot = cfg.prob_random_action_in_bot
if self.bot_action_type == 'mcts':
cfg_temp = EasyDict(cfg.copy())
cfg_temp.save_replay = False
cfg_temp.bot_action_type = None
env_mcts = Connect4Env(EasyDict(cfg_temp))
self.mcts_bot = MCTSBot(env_mcts, 'mcts_player', 50)
elif self.bot_action_type == 'rule':
self.rule_bot = Connect4RuleBot(self, self._current_player)
# Render the beginning state of the game.
if self.render_mode is not None:
self.render(self.render_mode)
def _player_step(self, action: int, flag: int) -> BaseEnvTimestep:
"""
Overview:
A function that implements the transition of the environment's state. \
After taking an action in the environment, the function transitions the environment to the next state \
and returns the relevant information for the next time step.
Arguments:
- action (:obj:`int`): A value from 0 to 6 indicating the position to move on the connect4 board.
- flag (:obj:`str`): A marker indicating the source of an action, for debugging convenience.
Returns:
- timestep (:obj:`BaseEnvTimestep`): A namedtuple that records the observation and obtained reward after taking the action, \
whether the game is terminated, and some other information.
"""
if action in self.legal_actions:
piece = self.players.index(self._current_player) + 1
for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))):
if self.board[i] == 0:
self.board[i] = piece
break
else:
print(np.array(self.board).reshape(6, 7))
logging.warning(
f"You input illegal action: {action}, the legal_actions are {self.legal_actions}. "
f"flag is {flag}."
f"Now we randomly choice a action from self.legal_actions."
)
action = self.random_action()
print("the random action is", action)
piece = self.players.index(self._current_player) + 1
for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))):
if self.board[i] == 0:
self.board[i] = piece
break
# Check if there is a winner.
done, winner = self.get_done_winner()
if not winner == -1:
reward = np.array(1).astype(np.float32)
else:
reward = np.array(0).astype(np.float32)
info = {}
self._current_player = self.next_player
obs = self.observe()
# Render the new step.
if self.render_mode is not None:
self.render(self.render_mode)
if done:
info['eval_episode_return'] = reward
if self.render_mode == 'image_savefile_mode':
self.save_render_output(replay_name_suffix=self.replay_name_suffix, replay_path=self.replay_path,
format=self.replay_format)
return BaseEnvTimestep(obs, reward, done, info)
def step(self, action: int) -> BaseEnvTimestep:
"""
Overview:
The step function of the environment. It receives an action from the player and returns the state of the environment after performing that action. \
In ``self_play_mode``, this function only call ``_player_step()`` once since the agent play with it self and play the role of both two players 1 and 2.\
In ``play_with_bot_mode``, this function first use the recieved ``action`` to call the ``_player_step()`` and then use the action from bot to call it again.\
Then return the result of taking these two actions sequentially in the environment.\
In ``eval_mode``, this function also call ``_player_step()`` twice, and the second action is from human action or from the bot.
Arguments:
- action (:obj:`int`): A value from 0 to 6 indicating the position to move on the connect4 board.
Returns:
- timestep (:obj:`BaseEnvTimestep`): A namedtuple that records the observation and obtained reward after taking the action, \
whether the game is terminated, and some other information.
"""
if self.battle_mode == 'self_play_mode':
if self.prob_random_agent > 0:
if np.random.rand() < self.prob_random_agent:
action = self.random_action()
elif self.prob_expert_agent > 0:
if np.random.rand() < self.prob_expert_agent:
action = self.bot_action()
flag = "agent"
timestep = self._player_step(action, flag)
if timestep.done:
# The ``eval_episode_return`` is calculated from player 1's perspective.
timestep.info['eval_episode_return'] = -timestep.reward if timestep.obs[
'to_play'] == 1 else timestep.reward
return timestep
elif self.battle_mode == 'play_with_bot_mode':
# Player 1's turn.
flag = "bot_agent"
timestep_player1 = self._player_step(action, flag)
if timestep_player1.done:
# NOTE: in ``play_with_bot_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep_player1.obs['to_play'] = -1
return timestep_player1
# Player 2's turn.
bot_action = self.bot_action()
flag = "bot_bot"
timestep_player2 = self._player_step(bot_action, flag)
# The ``eval_episode_return`` is calculated from player 1's perspective.
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in ``play_with_bot_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep.obs['to_play'] = -1
return timestep
elif self.battle_mode == 'eval_mode':
# Player 1's turn.
flag = "eval_agent"
timestep_player1 = self._player_step(action, flag)
if timestep_player1.done:
# NOTE: in ``eval_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep_player1.obs['to_play'] = -1
return timestep_player1
# Player 2's turn.
if self.agent_vs_human:
bot_action = self.human_to_action()
else:
bot_action = self.bot_action()
flag = "eval_bot"
timestep_player2 = self._player_step(bot_action, flag)
# The ``eval_episode_return`` is calculated from player 1's perspective.
timestep_player2.info['eval_episode_return'] = -timestep_player2.reward
timestep_player2 = timestep_player2._replace(reward=-timestep_player2.reward)
timestep = timestep_player2
# NOTE: in ``eval_mode``, we must set to_play as -1, because we don't consider the alternation between players.
# And the ``to_play`` is used in MCTS.
timestep.obs['to_play'] = -1
return timestep
def reset(self, start_player_index: int = 0, init_state: Optional[np.ndarray] = None,
replay_name_suffix: Optional[str] = None) -> dict:
"""
Overview:
Env reset and custom state start by init_state.
Arguments:
- start_player_index(:obj:`int`): players = [1,2], player_index = [0,1]
- init_state(:obj:`array`): custom start state.
"""
if replay_name_suffix is not None:
self.replay_name_suffix = replay_name_suffix
if init_state is None:
self.board = [0] * (6 * 7)
else:
self.board = init_state
self.players = [1, 2]
self.start_player_index = start_player_index
self._current_player = self.players[self.start_player_index]
self._action_space = spaces.Discrete(7)
self._reward_space = spaces.Box(low=-1, high=1, shape=(1,), dtype=np.float32)
self._observation_space = spaces.Dict(
{
"observation": spaces.Box(low=0, high=1, shape=(3, 6, 7), dtype=np.int8),
"action_mask": spaces.Box(low=0, high=1, shape=(7,), dtype=np.int8),
"board": spaces.Box(low=0, high=2, shape=(6, 7), dtype=np.int8),
"current_player_index": spaces.Discrete(2),
"to_play": spaces.Discrete(2),
}
)
obs = self.observe()
return obs
def current_state(self) -> Tuple[np.ndarray, np.ndarray]:
"""
Overview:
Obtain the state from the view of current player.\
self.board is nd-array, 0 indicates that no stones is placed here,\
1 indicates that player 1's stone is placed here, 2 indicates player 2's stone is placed here.
Returns:
- current_state (:obj:`array`):
the 0 dim means which positions is occupied by ``self.current_player``,\
the 1 dim indicates which positions are occupied by ``self.next_player``,\
the 2 dim indicates which player is the to_play player, 1 means player 1, 2 means player 2.
"""
board_vals = np.array(self.board).reshape(6, 7)
board_curr_player = np.where(board_vals == self.current_player, 1, 0)
board_opponent_player = np.where(board_vals == self.next_player, 1, 0)
board_to_play = np.full((6, 7), self.current_player)
raw_obs = np.array([board_curr_player, board_opponent_player, board_to_play], dtype=np.float32)
if self.scale:
scale_obs = copy.deepcopy(raw_obs / 2)
else:
scale_obs = copy.deepcopy(raw_obs)
if self.channel_last:
# move channel dim to last axis
# (C, W, H) -> (W, H, C)
return np.transpose(raw_obs, [1, 2, 0]), np.transpose(scale_obs, [1, 2, 0])
else:
# (C, W, H)
return raw_obs, scale_obs
def observe(self) -> dict:
legal_moves = self.legal_actions
action_mask = np.zeros(7, "int8")
for i in legal_moves:
action_mask[i] = 1
if self.battle_mode == 'play_with_bot_mode' or self.battle_mode == 'eval_mode':
return {"observation": self.current_state()[1],
"action_mask": action_mask,
"board": copy.deepcopy(self.board),
"current_player_index": self.players.index(self._current_player),
"to_play": -1
}
elif self.battle_mode == 'self_play_mode':
return {"observation": self.current_state()[1],
"action_mask": action_mask,
"board": copy.deepcopy(self.board),
"current_player_index": self.players.index(self._current_player),
"to_play": self._current_player
}
@property
def legal_actions(self) -> List[int]:
return [i for i in range(7) if self.board[i] == 0]
def render(self, mode: str = None) -> None:
"""
Overview:
Renders the Connect Four game environment.
Arguments:
- mode (:obj:`str`): The rendering mode. Options are None, 'state_realtime_mode', 'image_realtime_mode' or 'image_savefile_mode'.
When set to None, the game state is not rendered.
In 'state_realtime_mode', the game state is illustrated in a text-based format directly in the console.
The 'image_realtime_mode' displays the game as an RGB image in real-time.
With 'image_savefile_mode', the game is rendered as an RGB image but not displayed in real-time. Instead, the image is saved to a designated file.
Please note that the default rendering mode is set to None.
"""
# In 'state_realtime_mode' mode, print the current game board for rendering.
if mode == "state_realtime_mode":
print(np.array(self.board).reshape(6, 7))
return
else:
# In other two modes, use a screen for rendering.
screen_width = 99 * self.screen_scaling
screen_height = 86 / 99 * screen_width
pygame.init()
self.screen = pygame.Surface((screen_width, screen_height))
# Load and scale all of the necessary images.
tile_size = (screen_width * (91 / 99)) / 7
red_chip = self.get_image(os.path.join("img", "C4RedPiece.png"))
red_chip = pygame.transform.scale(
red_chip, (int(tile_size * (9 / 13)), int(tile_size * (9 / 13)))
)
black_chip = self.get_image(os.path.join("img", "C4BlackPiece.png"))
black_chip = pygame.transform.scale(
black_chip, (int(tile_size * (9 / 13)), int(tile_size * (9 / 13)))
)
board_img = self.get_image(os.path.join("img", "Connect4Board.png"))
board_img = pygame.transform.scale(
board_img, ((int(screen_width)), int(screen_height))
)
self.screen.blit(board_img, (0, 0))
# Blit the necessary chips and their positions.
for i in range(0, 42):
if self.board[i] == 1:
self.screen.blit(
red_chip,
(
(i % 7) * (tile_size) + (tile_size * (6 / 13)),
int(i / 7) * (tile_size) + (tile_size * (6 / 13)),
),
)
elif self.board[i] == 2:
self.screen.blit(
black_chip,
(
(i % 7) * (tile_size) + (tile_size * (6 / 13)),
int(i / 7) * (tile_size) + (tile_size * (6 / 13)),
),
)
if mode == "image_realtime_mode":
surface_array = pygame.surfarray.pixels3d(self.screen)
surface_array = np.transpose(surface_array, (1, 0, 2))
plt.imshow(surface_array)
plt.draw()
plt.pause(0.001)
elif mode == "image_savefile_mode":
# Draw the observation and save to frames.
observation = np.array(pygame.surfarray.pixels3d(self.screen))
self.frames.append(np.transpose(observation, axes=(1, 0, 2)))
self.screen = None
return None
def save_render_output(self, replay_name_suffix: str = '', replay_path: str = None, format: str = 'gif') -> None:
"""
Overview:
Save the rendered frames as an output file.
Arguments:
- replay_name_suffix (:obj:`str`): The suffix to be added to the replay filename.
- replay_path (:obj:`str`): The path to save the replay file. If None, the default filename will be used.
- format (:obj:`str`): The format of the output file. Options are 'gif' or 'mp4'.
"""
# At the end of the episode, save the frames.
if replay_path is None:
filename = f'connect4_{replay_name_suffix}.{format}'
else:
if not os.path.exists(replay_path):
os.makedirs(replay_path)
filename = replay_path + f'/connect4_{replay_name_suffix}.{format}'
if format == 'gif':
# Save frames as a GIF with a duration of 0.1 seconds per frame.
imageio.mimsave(filename, self.frames, 'GIF', duration=0.1)
elif format == 'mp4':
# Save frames as an MP4 video with a frame rate of 30 frames per second.
imageio.mimsave(filename, self.frames, fps=30, codec='mpeg4')
else:
raise ValueError("Unsupported format: {}".format(format))
logging.info("Saved output to {}".format(filename))
self.frames = []
def get_done_winner(self) -> Tuple[bool, int]:
"""
Overview:
Check if the game is done and find the winner.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'winner',
- if player 1 win, 'done' = True, 'winner' = 1
- if player 2 win, 'done' = True, 'winner' = 2
- if draw, 'done' = True, 'winner' = -1
- if game is not over, 'done' = False,'winner' = -1
"""
board = copy.deepcopy(np.array(self.board)).reshape(6, 7)
for piece in [1, 2]:
# Check horizontal locations for win
column_count = 7
row_count = 6
for c in range(column_count - 3):
for r in range(row_count):
if (
board[r][c] == piece
and board[r][c + 1] == piece
and board[r][c + 2] == piece
and board[r][c + 3] == piece
):
return True, piece
# Check vertical locations for win
for c in range(column_count):
for r in range(row_count - 3):
if (
board[r][c] == piece
and board[r + 1][c] == piece
and board[r + 2][c] == piece
and board[r + 3][c] == piece
):
return True, piece
# Check positively sloped diagonals
for c in range(column_count - 3):
for r in range(row_count - 3):
if (
board[r][c] == piece
and board[r + 1][c + 1] == piece
and board[r + 2][c + 2] == piece
and board[r + 3][c + 3] == piece
):
return True, piece
# Check negatively sloped diagonals
for c in range(column_count - 3):
for r in range(3, row_count):
if (
board[r][c] == piece
and board[r - 1][c + 1] == piece
and board[r - 2][c + 2] == piece
and board[r - 3][c + 3] == piece
):
return True, piece
if all(x in [1, 2] for x in self.board):
return True, -1
return False, -1
def get_done_reward(self) -> Tuple[bool, int]:
"""
Overview:
Check if the game is over and what is the reward in the perspective of player 1.\
Return 'done' and 'reward'.
Returns:
- outputs (:obj:`Tuple`): Tuple containing 'done' and 'reward',
- if player 1 win, 'done' = True, 'reward' = 1
- if player 2 win, 'done' = True, 'reward' = -1
- if draw, 'done' = True, 'reward' = 0
- if game is not over, 'done' = False,'reward' = None
"""
done, winner = self.get_done_winner()
if winner == 1:
reward = 1
elif winner == 2:
reward = -1
elif winner == -1 and done:
reward = 0
elif winner == -1 and not done:
# episode is not done
reward = None
return done, reward
def random_action(self) -> int:
action_list = self.legal_actions
return np.random.choice(action_list)
def bot_action(self) -> int:
if np.random.rand() < self.prob_random_action_in_bot:
return self.random_action()
else:
if self.bot_action_type == 'rule':
return self.rule_bot.get_rule_bot_action(self.board, self._current_player)
elif self.bot_action_type == 'mcts':
return self.mcts_bot.get_actions(self.board, player_index=self.current_player_index)
def action_to_string(self, action: int) -> str:
"""
Overview:
Convert an action number to a string representing the action.
Arguments:
- action: an integer from the action space.
Returns:
- String representing the action.
"""
return f"Play column {action + 1}"
def human_to_action(self) -> int:
"""
Overview:
For multiplayer games, ask the user for a legal action \
and return the corresponding action number.
Returns:
An integer from the action space.
"""
print(np.array(self.board).reshape(6, 7))
while True:
try:
column = int(
input(
f"Enter the column to play for the player {self.current_player}: "
)
)
action = column - 1
if action in self.legal_actions:
break
else:
print("Wrong input, try again")
except KeyboardInterrupt:
print("exit")
sys.exit(0)
except Exception as e:
print("Wrong input, try again")
return action
def seed(self, seed: int, dynamic_seed: bool = True) -> None:
self._seed = seed
self._dynamic_seed = dynamic_seed
np.random.seed(self._seed)
def __repr__(self) -> str:
return "LightZero Connect4 Env"
@property
def current_player(self) -> int:
return self._current_player
@property
def current_player_index(self) -> int:
"""
Overview:
current_player_index = 0, current_player = 1 \
current_player_index = 1, current_player = 2
"""
return 0 if self._current_player == 1 else 1
@property
def next_player(self) -> int:
return self.players[0] if self._current_player == self.players[1] else self.players[1]
@property
def observation_space(self) -> spaces.Space:
return self._observation_space
@property
def action_space(self) -> spaces.Space:
return self._action_space
@property
def reward_space(self) -> spaces.Space:
return self._reward_space
def simulate_action(self, action: int) -> Any:
"""
Overview:
execute action and get next_simulator_env. used in AlphaZero.
Arguments:
- action: an integer from the action space.
Returns:
- next_simulator_env: next simulator env after execute action.
"""
if action not in self.legal_actions:
raise ValueError("action {0} on board {1} is not legal".format(action, self.board))
new_board = copy.deepcopy(self.board)
piece = self.players.index(self._current_player) + 1
for i in list(filter(lambda x: x % 7 == action, list(range(41, -1, -1)))):
if new_board[i] == 0:
new_board[i] = piece
break
if self.start_player_index == 0:
start_player_index = 1 # self.players = [1, 2], start_player = 2, start_player_index = 1
else:
start_player_index = 0 # self.players = [1, 2], start_player = 1, start_player_index = 0
next_simulator_env = copy.deepcopy(self)
next_simulator_env.reset(start_player_index, init_state=new_board)
return next_simulator_env
@staticmethod
def create_collector_env_cfg(cfg: dict) -> List[dict]:
collector_env_num = cfg.pop('collector_env_num')
cfg = copy.deepcopy(cfg)
return [cfg for _ in range(collector_env_num)]
@staticmethod
def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
evaluator_env_num = cfg.pop('evaluator_env_num')
cfg = copy.deepcopy(cfg)
# In eval phase, we use ``eval_mode`` to make agent play with the built-in bot to
# evaluate the performance of the current agent.
cfg.battle_mode = 'eval_mode'
return [cfg for _ in range(evaluator_env_num)]
def close(self) -> None:
pass
def get_image(self, path: str) -> Any:
from os import path as os_path
import pygame
cwd = os_path.dirname(__file__)
image = pygame.image.load(cwd + "/" + path)
sfc = pygame.Surface(image.get_size(), flags=pygame.SRCALPHA)
sfc.blit(image, (0, 0))
return sfc
|