File size: 1,884 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
from copy import deepcopy

from ding.entry import serial_pipeline_offline, collect_demo_data, eval, serial_pipeline


def train_cql(args):
    from dizoo.atari.config.serial.pong.pong_cql_config import main_config, create_config
    main_config.exp_name = 'pong_cql'
    main_config.policy.collect.data_path = './pong/expert_demos.hdf5'
    main_config.policy.collect.data_type = 'hdf5'
    config = deepcopy([main_config, create_config])
    serial_pipeline_offline(config, seed=args.seed)


def eval_ckpt(args):
    from dizoo.atari.config.serial.pong.pong_qrdqn_generation_data_config import main_config, create_config
    main_config.exp_name = 'pong'
    config = deepcopy([main_config, create_config])
    eval(config, seed=args.seed, load_path='./pong/ckpt/ckpt_best.pth.tar')


def generate(args):
    from dizoo.atari.config.serial.pong.pong_qrdqn_generation_data_config import main_config, create_config
    main_config.exp_name = 'pong'
    main_config.policy.collect.save_path = './pong/expert.pkl'
    config = deepcopy([main_config, create_config])
    state_dict = torch.load('./pong/ckpt/ckpt_best.pth.tar', map_location='cpu')
    collect_demo_data(
        config,
        collect_count=int(1e5),
        seed=args.seed,
        expert_data_path=main_config.policy.collect.save_path,
        state_dict=state_dict
    )


def train_expert(args):
    from dizoo.atari.config.serial.pong.pong_qrdqn_config import main_config, create_config
    main_config.exp_name = 'pong'
    config = deepcopy([main_config, create_config])
    serial_pipeline(config, seed=args.seed, max_iterations=1e6)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument('--seed', '-s', type=int, default=10)
    args = parser.parse_args()

    train_expert(args)
    eval_ckpt(args)
    generate(args)
    train_cql(args)