File size: 3,050 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
from easydict import EasyDict
bipedalwalker_bco_config = dict(
exp_name='bipedalwalker_bco_seed0',
env=dict(
env_id='BipedalWalker-v3',
collector_env_num=8,
evaluator_env_num=5,
# (bool) Scale output action into legal range.
act_scale=True,
n_evaluator_episode=5,
stop_value=300,
rew_clip=True,
# The path to save the game replay
replay_path=None,
),
policy=dict(
# Whether to use cuda for network.
cuda=True,
continuous=True,
loss_type='l1_loss',
model=dict(
obs_shape=24,
action_shape=4,
action_space='regression',
actor_head_hidden_size=128,
),
learn=dict(
train_epoch=30,
batch_size=128,
learning_rate=0.01,
weight_decay=1e-4,
decay_epoch=1000,
decay_rate=0.5,
warmup_lr=1e-4,
warmup_epoch=3,
optimizer='SGD',
lr_decay=True,
momentum=0.9,
),
collect=dict(
n_episode=100,
# control the number (alpha*n_episode) of post-demonstration environment interactions at each iteration.
# Notice: alpha * n_episode > collector_env_num
model_path='abs model path', # expert model path
data_path='abs data path', # expert data path
noise=True,
noise_sigma=dict(
start=0.5,
end=0.1,
decay=1000000,
type='exp',
),
noise_range=dict(
min=-1,
max=1,
),
),
eval=dict(evaluator=dict(eval_freq=100, )),
other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ),
),
bco=dict(
learn=dict(idm_batch_size=128, idm_learning_rate=0.001, idm_weight_decay=0, idm_train_epoch=50),
model=dict(
action_space='regression',
idm_encoder_hidden_size_list=[60, 80, 100, 40],
),
alpha=0.2,
)
)
bipedalwalker_bco_config = EasyDict(bipedalwalker_bco_config)
main_config = bipedalwalker_bco_config
bipedalwalker_bco_create_config = dict(
env=dict(
type='bipedalwalker',
import_names=['dizoo.box2d.bipedalwalker.envs.bipedalwalker_env'],
),
env_manager=dict(type='base'),
policy=dict(type='bc'),
collector=dict(type='episode'),
)
bipedalwalker_bco_create_config = EasyDict(bipedalwalker_bco_create_config)
create_config = bipedalwalker_bco_create_config
if __name__ == "__main__":
from ding.entry import serial_pipeline_bco
from dizoo.box2d.bipedalwalker.config import bipedalwalker_sac_config, bipedalwalker_sac_create_config
expert_main_config = bipedalwalker_sac_config
expert_create_config = bipedalwalker_sac_create_config
serial_pipeline_bco(
[main_config, create_config], [expert_main_config, expert_create_config], seed=0, max_env_step=2000000
)
|