File size: 2,674 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
from easydict import EasyDict
lunarlander_impala_config = dict(
exp_name='impala_log/lunarlander_impala_seed0',
env=dict(
env_id='LunarLander-v2',
collector_env_num=8,
evaluator_env_num=5,
n_evaluator_episode=5,
stop_value=3000,
),
policy=dict(
cuda=True,
# (int) the trajectory length to calculate v-trace target
unroll_len=32,
random_collect_size=256,
model=dict(
obs_shape=8,
action_shape=4,
encoder_hidden_size_list=[64, 64],
),
learn=dict(
# (int) collect n_sample data, train model update_per_collect times
# here we follow ppo serial pipeline
update_per_collect=10,
# (int) the number of data for a train iteration
batch_size=128,
grad_clip_type='clip_norm',
clip_value=5,
learning_rate=0.0003,
# (float) loss weight of the value network, the weight of policy network is set to 1
value_weight=0.5,
# (float) loss weight of the entropy regularization, the weight of policy network is set to 1
entropy_weight=0.0001,
# (float) discount factor for future reward, defaults int [0, 1]
discount_factor=0.99,
# (float) additional discounting parameter
lambda_=0.95,
# (float) clip ratio of importance weights
rho_clip_ratio=1.0,
# (float) clip ratio of importance weights
c_clip_ratio=1.0,
# (float) clip ratio of importance sampling
rho_pg_clip_ratio=1.0,
),
collect=dict(
# (int) collect n_sample data, train model update_per_collect times
n_sample=32,
),
eval=dict(evaluator=dict(eval_freq=500, )),
other=dict(replay_buffer=dict(replay_buffer_size=1000, sliced=True), ),
),
)
lunarlander_impala_config = EasyDict(lunarlander_impala_config)
main_config = lunarlander_impala_config
lunarlander_impala_create_config = dict(
env=dict(
type='lunarlander',
import_names=['dizoo.box2d.lunarlander.envs.lunarlander_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(type='impala'),
replay_buffer=dict(type='naive'),
)
lunarlander_impala_create_config = EasyDict(lunarlander_impala_create_config)
create_config = lunarlander_impala_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c lunarlander_impala_config.py -s 0`
from ding.entry import serial_pipeline
serial_pipeline((main_config, create_config), seed=0)
|