File size: 1,832 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
from easydict import EasyDict
pendulum_td3_config = dict(
exp_name='pendulum_td3_seed0',
env=dict(
collector_env_num=8,
evaluator_env_num=5,
# (bool) Scale output action into legal range.
act_scale=True,
n_evaluator_episode=5,
stop_value=-250,
),
policy=dict(
cuda=False,
priority=False,
random_collect_size=800,
model=dict(
obs_shape=3,
action_shape=1,
twin_critic=True,
action_space='regression',
),
learn=dict(
update_per_collect=2,
batch_size=128,
learning_rate_actor=0.001,
learning_rate_critic=0.001,
ignore_done=True,
actor_update_freq=2,
noise=True,
noise_sigma=0.1,
noise_range=dict(
min=-0.5,
max=0.5,
),
),
collect=dict(
n_sample=48,
noise_sigma=0.1,
collector=dict(collect_print_freq=1000, ),
),
eval=dict(evaluator=dict(eval_freq=100, ), ),
other=dict(replay_buffer=dict(replay_buffer_size=20000, ), ),
),
)
pendulum_td3_config = EasyDict(pendulum_td3_config)
main_config = pendulum_td3_config
pendulum_td3_create_config = dict(
env=dict(
type='pendulum',
import_names=['dizoo.classic_control.pendulum.envs.pendulum_env'],
),
env_manager=dict(type='base'),
policy=dict(type='td3'),
)
pendulum_td3_create_config = EasyDict(pendulum_td3_create_config)
create_config = pendulum_td3_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c pendulum_td3_config.py -s 0`
from ding.entry import serial_pipeline
serial_pipeline([main_config, create_config], seed=0)
|