File size: 2,294 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
from easydict import EasyDict
import os
# os.environ['MUJOCO_GL']="egl"
dmc2gym_sac_config = dict(
exp_name='dmc2gym_sac_pixel_seed0',
env=dict(
env_id='dmc2gym-v0',
domain_name="cartpole",
task_name="swingup",
frame_skip=4,
warp_frame=True,
scale=True,
clip_rewards=False,
frame_stack=3,
from_pixels=True, # pixel obs
channels_first=False, # obs shape (height, width, 3)
collector_env_num=8,
evaluator_env_num=8,
n_evaluator_episode=8,
stop_value=1e6,
manager=dict(shared_memory=False, ),
),
policy=dict(
model_type='pixel',
cuda=True,
random_collect_size=10000,
model=dict(
obs_shape=(3, 84, 84),
action_shape=1,
twin_critic=True,
encoder_hidden_size_list=[32, 32, 32],
actor_head_hidden_size=1024,
critic_head_hidden_size=1024,
share_encoder=True,
),
learn=dict(
ignore_done=True,
update_per_collect=1,
batch_size=128,
learning_rate_q=1e-3,
learning_rate_policy=1e-3,
learning_rate_alpha=3e-4,
target_theta=0.005,
discount_factor=0.99,
alpha=0.2,
reparameterization=True,
auto_alpha=True,
),
collect=dict(
n_sample=1,
unroll_len=1,
),
eval=dict(),
other=dict(replay_buffer=dict(replay_buffer_size=100000, ), ),
),
)
dmc2gym_sac_config = EasyDict(dmc2gym_sac_config)
main_config = dmc2gym_sac_config
dmc2gym_sac_create_config = dict(
env=dict(
type='dmc2gym',
import_names=['dizoo.dmc2gym.envs.dmc2gym_env'],
),
env_manager=dict(type='subprocess'),
policy=dict(
type='sac',
import_names=['ding.policy.sac'],
),
replay_buffer=dict(type='naive', ),
)
dmc2gym_sac_create_config = EasyDict(dmc2gym_sac_create_config)
create_config = dmc2gym_sac_create_config
if __name__ == "__main__":
# or you can enter `ding -m serial -c ant_sac_config.py -s 0 --env-step 1e7`
from ding.entry import serial_pipeline
serial_pipeline((main_config, create_config), seed=0) |