File size: 70,855 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 |
import copy
import enum
from collections import namedtuple
from operator import attrgetter
from functools import reduce
import numpy as np
import math
import random
from ditk import logging
from easydict import EasyDict
import pysc2.env.sc2_env as sc2_env
from pysc2.env.sc2_env import SC2Env, Agent, MAX_STEP_COUNT, get_default, crop_and_deduplicate_names
from pysc2.lib import protocol
from s2clientprotocol import common_pb2 as sc_common
from s2clientprotocol import debug_pb2 as d_pb
from s2clientprotocol import sc2api_pb2 as sc_pb
from ding.envs import BaseEnv
from ding.envs.common.env_element import EnvElement, EnvElementInfo
from ding.utils import ENV_REGISTRY, deep_merge_dicts
from .smac_map import get_map_params
from .smac_action import SMACAction, distance
from .smac_reward import SMACReward
races = {
"R": sc_common.Random,
"P": sc_common.Protoss,
"T": sc_common.Terran,
"Z": sc_common.Zerg,
}
ORIGINAL_AGENT = "me"
OPPONENT_AGENT = "opponent"
SUPPORT_MAPS = [
"SMAC_Maps_two_player/3s5z.SC2Map",
"SMAC_Maps_two_player/3m.SC2Map",
"GBU_Maps/infestor_viper.sc2map",
]
FORCE_RESTART_INTERVAL = 50000
class Direction(enum.IntEnum):
NORTH = 0
SOUTH = 1
EAST = 2
WEST = 3
@ENV_REGISTRY.register('smac')
class SMACEnv(SC2Env, BaseEnv):
"""
This environment provides the interface for both single agent and multiple agents (two players) in
SC2 environment.
"""
SMACTimestep = namedtuple('SMACTimestep', ['obs', 'reward', 'done', 'info', 'episode_steps'])
SMACEnvInfo = namedtuple('SMACEnvInfo', ['agent_num', 'obs_space', 'act_space', 'rew_space', 'episode_limit'])
config = dict(
two_player=False,
mirror_opponent=False,
reward_type="original",
save_replay_episodes=None,
difficulty=7,
reward_death_value=10,
reward_win=200,
obs_alone=False,
game_steps_per_episode=None,
reward_only_positive=True,
death_mask=False,
special_global_state=False,
# add map's center location ponit or not
add_center_xy=True,
independent_obs=False,
# add agent's id information or not in special global state
state_agent_id=True,
)
def __init__(
self,
cfg,
):
cfg = deep_merge_dicts(EasyDict(self.config), cfg)
self.cfg = cfg
self.save_replay_episodes = cfg.save_replay_episodes
assert (self.save_replay_episodes is None) or isinstance(
self.save_replay_episodes, int
) # Denote the number of replays to save
self.two_player = cfg.two_player
self.difficulty = cfg.difficulty
self.obs_alone = cfg.obs_alone
self.game_steps_per_episode = cfg.game_steps_per_episode
map_name = cfg.map_name
assert map_name is not None
map_params = get_map_params(map_name)
self.reward_only_positive = cfg.reward_only_positive
self.difficulty = cfg.difficulty
self.obs_alone = cfg.obs_alone
self.players, self.num_players = self._get_players(
"agent_vs_agent" if self.two_player else "game_vs_bot",
player1_race=map_params["a_race"],
player2_race=map_params["b_race"]
)
self._map_name = map_name
# SMAC used
self.n_agents = map_params["n_agents"]
self.n_enemies = map_params["n_enemies"]
self.episode_limit = map_params["limit"]
self._agent_race = map_params["a_race"]
self._bot_race = map_params["b_race"]
self.shield_bits_ally = 1 if self._agent_race == "P" else 0
self.shield_bits_enemy = 1 if self._bot_race == "P" else 0
self.unit_type_bits = map_params["unit_type_bits"]
self.map_type = map_params["map_type"]
self.agents = {}
self.enemies = {}
self._episode_count = 0
self._episode_steps = 0
self._total_steps = 0
self._next_reset_steps = FORCE_RESTART_INTERVAL
self._obs = None
self.battles_won = 0
self.battles_game = 0
self.timeouts = 0
self.force_restarts = 0
self.last_stats = None
self._min_unit_type = 0
self.marine_id = self.marauder_id = self.medivac_id = 0
self.hydralisk_id = self.zergling_id = self.baneling_id = 0
self.stalker_id = self.colossus_id = self.zealot_id = 0
self.add_center_xy = cfg.add_center_xy
self.state_agent_id = cfg.state_agent_id
self.death_mask = cfg.death_mask
self.special_global_state = cfg.special_global_state
# reward
self.reward_death_value = cfg.reward_death_value
self.reward_win = cfg.reward_win
self.reward_defeat = 0
self.reward_negative_scale = 0.5
self.reward_type = cfg.reward_type
self.max_reward = (self.n_enemies * self.reward_death_value + self.reward_win)
self.obs_pathing_grid = False
self.obs_own_health = True
self.obs_all_health = True
self.obs_instead_of_state = False
self.obs_last_action = True
self.obs_terrain_height = False
self.obs_timestep_number = False
self.state_last_action = True
self.state_timestep_number = False
if self.obs_all_health:
self.obs_own_health = True
self.n_obs_pathing = 8
self.n_obs_height = 9
self._move_amount = 2
self.continuing_episode = False
self._seed = None
self._launch_env_flag = True
self.just_force_restarts = False
# Set to false if you need structured observation / state
self.flatten_observation = True
self.mirror_opponent = cfg.mirror_opponent
if self.mirror_opponent:
self.flatten_observation = False
# Opponent related variables
self.battles_won_opponent = 0
self.battles_defeat = 0
self._min_unit_type_opponent = 0
self.marine_id_opponent = self.marauder_id_opponent = self.medivac_id_opponent = 0
self.hydralisk_id_opponent = self.zergling_id_opponent = self.baneling_id_opponent = 0
self.stalker_id_opponent = self.colossus_id_opponent = self.zealot_id_opponent = 0
self.max_distance_x = 0
self.max_distance_y = 0
self.map_x = 0
self.map_y = 0
self.previous_ally_units = None
self.previous_enemy_units = None
self.independent_obs = cfg.independent_obs
self.action_helper = SMACAction(self.n_agents, self.n_enemies, self.two_player, self.mirror_opponent)
self.reward_helper = SMACReward(
self.n_agents,
self.n_enemies,
self.two_player,
self.reward_type,
self.max_reward,
reward_only_positive=self.reward_only_positive
)
self._observation_space = self.get_obs_space()
self._action_space = self.action_helper.info(),
self._reward_space = self.reward_helper.info(),
def seed(self, seed, dynamic_seed=False):
self._seed = seed
def _create_join(self):
if self.two_player:
for m in self._maps:
m.directory = "SMAC_Maps_two_player"
map_path = m.path
assert map_path in SUPPORT_MAPS, "We only support the following maps: {}. Please move " \
"the maps in evaluate/sources/SMAC_Maps_two_player " \
"to the maps folder of SC2."
# copy and overwrite original implementation
map_inst = random.choice(self._maps)
self._map_name = map_inst.name
self._step_mul = max(1, self._default_step_mul or map_inst.step_mul)
self._score_index = get_default(self._default_score_index, map_inst.score_index)
self._score_multiplier = get_default(self._default_score_multiplier, map_inst.score_multiplier)
self._episode_length = get_default(self._default_episode_length, map_inst.game_steps_per_episode)
if self._episode_length <= 0 or self._episode_length > MAX_STEP_COUNT:
self._episode_length = MAX_STEP_COUNT
# Create the game. Set the first instance as the host.
create = sc_pb.RequestCreateGame(disable_fog=self._disable_fog, realtime=self._realtime)
if self._battle_net_map:
create.battlenet_map_name = map_inst.battle_net
else:
create.local_map.map_path = map_inst.path
map_data = map_inst.data(self._run_config)
if self._num_agents == 1:
create.local_map.map_data = map_data
else:
# Save the maps so they can access it. Don't do it in parallel since SC2
# doesn't respect tmpdir on windows, which leads to a race condition:
# https://github.com/Blizzard/s2client-proto/issues/102
for c in self._controllers:
c.save_map(map_inst.path, map_data)
if self._random_seed is not None:
create.random_seed = self._random_seed
for p in self._players:
if isinstance(p, Agent):
create.player_setup.add(type=sc_pb.Participant)
else:
create.player_setup.add(
type=sc_pb.Computer,
race=random.choice(p.race),
difficulty=p.difficulty,
ai_build=random.choice(p.build)
)
if self._num_agents > 1:
self._controllers[1].create_game(create)
else:
self._controllers[0].create_game(create)
# Create the join requests.
agent_players = [p for p in self._players if isinstance(p, Agent)]
self.sanitized_names = crop_and_deduplicate_names(p.name for p in agent_players)
join_reqs = []
for p, name, interface in zip(agent_players, self.sanitized_names, self._interface_options):
join = sc_pb.RequestJoinGame(options=interface)
join.race = random.choice(p.race)
join.player_name = name
if self._ports:
join.shared_port = 0 # unused
join.server_ports.game_port = self._ports[0]
join.server_ports.base_port = self._ports[1]
for i in range(self._num_agents - 1):
join.client_ports.add(game_port=self._ports[i * 2 + 2], base_port=self._ports[i * 2 + 3])
join_reqs.append(join)
# Join the game. This must be run in parallel because Join is a blocking
# call to the game that waits until all clients have joined.
self._parallel.run((c.join_game, join) for c, join in zip(self._controllers, join_reqs))
self._game_info = self._parallel.run(c.game_info for c in self._controllers)
for g, interface in zip(self._game_info, self._interface_options):
if g.options.render != interface.render:
logging.warning(
"Actual interface options don't match requested options:\n"
"Requested:\n%s\n\nActual:\n%s", interface, g.options
)
# original pysc2 case
# if require_features:
# self._features = [
# features.features_from_game_info(
# game_info=g, agent_interface_format=aif, map_name=self._map_name)
# for g, aif in zip(self._game_info, self._interface_formats)]
# smac case
self._features = None
def _get_players(self, game_type, player1_race, player2_race):
if game_type == 'game_vs_bot':
agent_num = 1
print('difficulty', self.difficulty)
players = [sc2_env.Agent(races[player1_race]), sc2_env.Bot(races[player2_race], self.difficulty)]
elif game_type == 'agent_vs_agent':
agent_num = 2
players = [sc2_env.Agent(races[player1_race]), sc2_env.Agent(races[player2_race])]
else:
raise KeyError("invalid game_type: {}".format(game_type))
return players, agent_num
def _launch(self):
print("*****LAUNCH FUNCTION CALLED*****")
# necessary for compatibility with pysc2
from absl import flags
flags.FLAGS(['smac'])
agent_interface_format = sc2_env.parse_agent_interface_format(use_raw_units=True)
SC2Env.__init__(
self,
map_name=self.map_name,
battle_net_map=False,
players=self.players,
agent_interface_format=agent_interface_format,
discount=None,
discount_zero_after_timeout=False,
visualize=False,
step_mul=8,
realtime=False,
save_replay_episodes=self.save_replay_episodes,
replay_dir=None if self.save_replay_episodes is None else ".",
replay_prefix=None,
game_steps_per_episode=self.game_steps_per_episode,
score_index=None,
score_multiplier=None,
random_seed=self._seed,
disable_fog=False,
ensure_available_actions=True,
version=None
)
self._launch_env_flag = True
game_info = self._game_info[0]
map_info = game_info.start_raw
map_play_area_min = map_info.playable_area.p0
map_play_area_max = map_info.playable_area.p1
self.max_distance_x = map_play_area_max.x - map_play_area_min.x
self.max_distance_y = map_play_area_max.y - map_play_area_min.y
self.map_x = map_info.map_size.x
self.map_y = map_info.map_size.y
self.action_helper.update(map_info, self.map_x, self.map_y)
def _restart_episode(self):
"""Restart the environment by killing all units on the map.
There is a trigger in the SC2Map file, which restarts the
episode when there are no units left.
"""
try:
run_commands = [
(
self._controllers[0].debug,
d_pb.DebugCommand(
kill_unit=d_pb.DebugKillUnit(
tag=[unit.tag for unit in self.agents.values() if unit.health > 0] +
[unit.tag for unit in self.enemies.values() if unit.health > 0]
)
)
)
]
if self.two_player:
run_commands.append(
(self._controllers[1].debug, d_pb.DebugCommand(kill_unit=d_pb.DebugKillUnit(tag=[])))
)
# Kill all units on the map.
self._parallel.run(run_commands)
# Forward 2 step to make sure all units revive.
ret = self._parallel.run((c.step, 2) for c in self._controllers)
except (protocol.ProtocolError, protocol.ConnectionError) as e:
print("Error happen in _restart. Error: ", e)
self.full_restart()
def full_restart(self):
self.close()
self._launch()
self.force_restarts += 1
self.just_force_restarts = True
def reset(self):
self._episode_steps = 0
self._final_eval_fake_reward = 0.
old_unit_tags = set(u.tag for u in self.agents.values()).union(set(u.tag for u in self.enemies.values()))
if self.just_force_restarts:
old_unit_tags = set()
self.just_force_restarts = False
if self._launch_env_flag:
# Launch StarCraft II
print("*************LAUNCH TOTAL GAME********************")
self._launch()
self._launch_env_flag = False
elif (self._total_steps > self._next_reset_steps) or (self.save_replay_episodes is not None):
# Avoid hitting the real episode limit of SC2 env
print("We are full restarting the environment! save_replay_episodes: ", self.save_replay_episodes)
self.full_restart()
old_unit_tags = set()
self._next_reset_steps += FORCE_RESTART_INTERVAL
else:
self._restart_episode()
# Information kept for counting the reward
self.win_counted = False
self.defeat_counted = False
self.action_helper.reset()
self.previous_ally_units = None
self.previous_enemy_units = None
# if self.heuristic_ai:
# self.heuristic_targets = [None] * self.n_agents
count = 0
while count <= 5:
self._update_obs()
#print("INTERNAL INIT UNIT BEGIN")
init_flag = self.init_units(old_unit_tags)
#print("INTERNAL INIT UNIT OVER", init_flag)
count += 1
if init_flag:
break
else:
old_unit_tags = set()
if count >= 5:
raise RuntimeError("reset 5 times error")
self.reward_helper.reset(self.max_reward)
assert all(u.health > 0 for u in self.agents.values())
assert all(u.health > 0 for u in self.enemies.values())
if not self.two_player:
if self.obs_alone:
agent_state, agent_alone_state, agent_alone_padding_state = self.get_obs()
return {
'agent_state': agent_state,
'agent_alone_state': agent_alone_state,
'agent_alone_padding_state': agent_alone_padding_state,
'global_state': self.get_state(),
'action_mask': self.get_avail_actions()
}
elif self.independent_obs:
return {
'agent_state': self.get_obs(),
'global_state': self.get_obs(),
'action_mask': self.get_avail_actions(),
}
elif self.special_global_state:
return {
'agent_state': self.get_obs(),
'global_state': self.get_global_special_state(),
'action_mask': self.get_avail_actions(),
}
else:
return {
'agent_state': self.get_obs(),
'global_state': self.get_state(),
'action_mask': self.get_avail_actions(),
}
return {
'agent_state': {
ORIGINAL_AGENT: self.get_obs(),
OPPONENT_AGENT: self.get_obs(True)
},
'global_state': {
ORIGINAL_AGENT: self.get_state(),
OPPONENT_AGENT: self.get_state(True)
},
'action_mask': {
ORIGINAL_AGENT: self.get_avail_actions(),
OPPONENT_AGENT: self.get_avail_actions(True),
},
}
def _submit_actions(self, actions):
if self.two_player:
# actions is a dict with 'me' and 'opponent' keys.
actions_me, actions_opponent = actions[ORIGINAL_AGENT], actions[OPPONENT_AGENT]
self._parallel.run(
[
(self._controllers[0].actions, sc_pb.RequestAction(actions=actions_me)),
(self._controllers[1].actions, sc_pb.RequestAction(actions=actions_opponent))
]
)
step_mul = self._step_mul
if step_mul <= 0:
raise ValueError("step_mul should be positive, got {}".format(step_mul))
if not any(c.status_ended for c in self._controllers): # May already have ended.
self._parallel.run((c.step, step_mul) for c in self._controllers)
self._update_obs(target_game_loop=self._episode_steps + step_mul)
else:
# actions is a sequence
# Send action request
req_actions = sc_pb.RequestAction(actions=actions)
self._controllers[0].actions(req_actions)
self._controllers[0].step(self._step_mul)
self._update_obs()
def _get_empty_action(self, old_action):
me_act = []
for a_id in range(self.n_agents):
no_op = self.action_helper.get_avail_agent_actions(a_id, self, is_opponent=False)[0]
me_act.append(0 if no_op else 1)
if isinstance(old_action, dict):
op_act = []
for a_id in range(self.n_enemies):
no_op = self.action_helper.get_avail_agent_actions(a_id, self, is_opponent=False)[0]
op_act.append(0 if no_op else 1)
new_action = {ORIGINAL_AGENT: me_act, OPPONENT_AGENT: op_act}
else:
new_action = me_act
return new_action
def step(self, actions, force_return_two_player=False):
processed_actions = self.action_helper.get_action(actions, self)
# self._submit_actions(processed_actions)
try:
# print("Submitting actions: ", actions)
self._submit_actions(processed_actions)
# raise ValueError() # To test the functionality of restart
except (protocol.ProtocolError, protocol.ConnectionError, ValueError) as e:
print("Error happen in step! Error: ", e)
self.full_restart()
info = {'abnormal': True}
return self.SMACTimestep(obs=None, reward=None, done=True, info=info, episode_steps=self._episode_steps)
# Update units
game_end_code = self.update_units()
rewards, terminates, infos = self._collect_step_data(game_end_code, actions)
infos["draw"] = int(not (infos["me"]["battle_won"] or infos["opponent"]["battle_won"]))
if (not self.two_player) and (not force_return_two_player):
rewards, terminates, new_infos = rewards[ORIGINAL_AGENT], terminates[ORIGINAL_AGENT], infos[ORIGINAL_AGENT]
self._final_eval_fake_reward += rewards
new_infos["battle_lost"] = infos[OPPONENT_AGENT]["battle_won"]
new_infos["draw"] = infos["draw"]
new_infos['eval_episode_return'] = infos['eval_episode_return']
if 'episode_info' in infos:
new_infos['episode_info'] = infos['episode_info']
new_infos['fake_eval_episode_return'] = infos['fake_eval_episode_return']
infos = new_infos
if self.obs_alone:
agent_state, agent_alone_state, agent_alone_padding_state = self.get_obs()
obs = {
'agent_state': agent_state,
'agent_alone_state': agent_alone_state,
'agent_alone_padding_state': agent_alone_padding_state,
'global_state': self.get_state(),
'action_mask': self.get_avail_actions()
}
elif self.independent_obs:
obs = {
'agent_state': self.get_obs(),
'global_state': self.get_obs(),
'action_mask': self.get_avail_actions(),
}
elif self.special_global_state:
obs = {
'agent_state': self.get_obs(),
'global_state': self.get_global_special_state(),
'action_mask': self.get_avail_actions(),
}
else:
obs = {
'agent_state': self.get_obs(),
'global_state': self.get_state(),
'action_mask': self.get_avail_actions(),
}
else:
raise NotImplementedError
return self.SMACTimestep(
obs=copy.deepcopy(obs), reward=rewards, done=terminates, info=infos, episode_steps=self._episode_steps
)
def _collect_step_data(self, game_end_code, action):
"""This function is called only once at each step, no matter whether you take opponent as agent.
We already return dicts for each term, as in Multi-agent scenario.
"""
self._total_steps += 1
self._episode_steps += 1
terminated = False
reward = self.reward_helper.get_reward(self, action, game_end_code, self.win_counted, self.defeat_counted)
for k in reward:
reward[k] = np.array(reward[k]).astype(np.float32)
info = {
ORIGINAL_AGENT: {
"battle_won": False
},
OPPONENT_AGENT: {
"battle_won": False
},
'eval_episode_return': 0.,
'fake_eval_episode_return': 0.
}
if game_end_code is not None:
# Battle is over
terminated = True
self.battles_game += 1
if game_end_code == 1 and not self.win_counted:
# The original agent win the game.
self.battles_won += 1
self.win_counted = True
info[ORIGINAL_AGENT]["battle_won"] = True
info[OPPONENT_AGENT]["battle_won"] = False
info['eval_episode_return'] = 1.
elif game_end_code == -1 and not self.defeat_counted:
self.defeat_counted = True
info[ORIGINAL_AGENT]["battle_won"] = False
info[OPPONENT_AGENT]["battle_won"] = True
elif self._episode_steps >= self.episode_limit:
# Episode limit reached
terminated = True
if self.continuing_episode:
info[ORIGINAL_AGENT]["episode_limit"] = True
info[OPPONENT_AGENT]["episode_limit"] = True
self.battles_game += 1
self.timeouts += 1
# info['eval_episode_return'] = -0.5
# if sum(u.health + u.shield for u in self.agents.values()) >= \
# sum(u.health + u.shield for u in self.enemies.values()):
# # lj fix
# reward[ORIGINAL_AGENT] += 1
# reward[OPPONENT_AGENT] += -1
# else:
# reward[ORIGINAL_AGENT] += -1
# reward[OPPONENT_AGENT] += 1
if terminated:
self._episode_count += 1
# 1-dim to 0-dim
# count units that are still alive
dead_allies, dead_enemies = 0, 0
for al_id, al_unit in self.agents.items():
if al_unit.health == 0:
dead_allies += 1
for e_id, e_unit in self.enemies.items():
if e_unit.health == 0:
dead_enemies += 1
info['episode_info'] = {
'final_eval_fake_reward': self._final_eval_fake_reward[0],
'dead_allies': dead_allies,
'dead_enemies': dead_enemies
}
self._final_eval_fake_reward = 0.
# PZH: Zero at first step
if self._episode_steps == 1:
for k in reward.keys():
reward[k] *= 0.0
if terminated:
print("WARNNING! Should not terminate at the first step!")
# Test purpose
# reward = {k: 0 * v + 100 for k, v in reward.items()}
info['fake_eval_episode_return'] = reward[ORIGINAL_AGENT]
return reward, {ORIGINAL_AGENT: terminated, OPPONENT_AGENT: terminated, "__all__": terminated}, info
def close(self):
SC2Env.close(self)
def init_units(self, old_unit_tags):
count = 0
while count < 10:
# Sometimes not all units have yet been created by SC2
self.agents = {}
self.enemies = {}
ally_units = [
unit for unit in self._obs.observation.raw_data.units
if (unit.owner == 1) and (unit.tag not in old_unit_tags)
]
ally_units_sorted = sorted(
ally_units,
key=attrgetter("unit_type", "pos.x", "pos.y"),
reverse=False,
)
for i in range(len(ally_units_sorted)):
self.agents[i] = ally_units_sorted[i]
self.max_reward = self.n_enemies * self.reward_death_value + self.reward_win
for unit in self._obs.observation.raw_data.units:
if (unit.owner == 2) and (unit.tag not in old_unit_tags):
self.enemies[len(self.enemies)] = unit
# if self._episode_count == 0:
self.max_reward += unit.health_max + unit.shield_max
all_agents_created = (len(self.agents) == self.n_agents)
all_enemies_created = (len(self.enemies) == self.n_enemies)
all_agents_health = all(u.health > 0 for u in self.agents.values())
all_enemies_health = all(u.health > 0 for u in self.enemies.values())
if all_agents_created and all_enemies_created \
and all_agents_health and all_enemies_health: # all good
if self._episode_count == 0:
min_unit_type = min(unit.unit_type for unit in self.agents.values())
min_unit_type_opponent = min(unit.unit_type for unit in self.enemies.values())
self._init_ally_unit_types(min_unit_type)
self._init_enemy_unit_types(min_unit_type_opponent)
return True
else:
print(
"***ALL GOOD FAIL***", all_agents_created, all_enemies_created, all_agents_health,
all_enemies_health, len(self._obs.observation.raw_data.units)
)
print(
(len(self.agents) == self.n_agents), (len(self.enemies) == self.n_enemies), len(self.agents),
self.n_agents, len(self.enemies), self.n_enemies
)
self._restart_episode()
count += 1
try:
self._parallel.run((c.step, 1) for c in self._controllers)
self._update_obs()
except (protocol.ProtocolError, protocol.ConnectionError) as e:
print("Error happen in init_units.", e)
self.full_restart()
return False
if count >= 10:
self.full_restart()
return False
def _init_enemy_unit_types(self, min_unit_type_opponent):
"""Initialise ally unit types. Should be called once from the
init_units function.
"""
self._min_unit_type_opponent = min_unit_type_opponent
if self.map_type == "marines":
self.marine_id_opponent = min_unit_type_opponent
elif self.map_type == "stalkers_and_zealots":
self.stalker_id_opponent = min_unit_type_opponent
self.zealot_id_opponent = min_unit_type_opponent + 1
elif self.map_type == "colossi_stalkers_zealots":
self.colossus_id_opponent = min_unit_type_opponent
self.stalker_id_opponent = min_unit_type_opponent + 1
self.zealot_id_opponent = min_unit_type_opponent + 2
elif self.map_type == "MMM":
self.marauder_id_opponent = min_unit_type_opponent
self.marine_id_opponent = min_unit_type_opponent + 1
self.medivac_id_opponent = min_unit_type_opponent + 2
elif self.map_type == "zealots":
self.zealot_id_opponent = min_unit_type_opponent
elif self.map_type == "hydralisks":
self.hydralisk_id_opponent = min_unit_type_opponent
elif self.map_type == "stalkers":
self.stalker_id_opponent = min_unit_type_opponent
elif self.map_type == "colossus":
self.colossus_id_opponent = min_unit_type_opponent
elif self.map_type == "bane":
self.baneling_id_opponent = min_unit_type_opponent
self.zergling_id_opponent = min_unit_type_opponent + 1
# ================
def unit_max_shield(self, unit, is_opponent=False):
"""Returns maximal shield for a given unit."""
stalker_id = self.stalker_id_opponent if is_opponent else self.stalker_id
zealot_id = self.zealot_id_opponent if is_opponent else self.zealot_id
colossus_id = self.colossus_id_opponent if is_opponent else self.colossus_id
if unit.unit_type == 74 or unit.unit_type == stalker_id:
return 80 # Protoss's Stalker
if unit.unit_type == 73 or unit.unit_type == zealot_id:
return 50 # Protoss's Zaelot
if unit.unit_type == 4 or unit.unit_type == colossus_id:
return 150 # Protoss's Colossus
def get_unit_type_id(self, unit, ally, is_opponent=False):
if is_opponent and ally:
return unit.unit_type - self._min_unit_type_opponent
else:
if ally: # use new SC2 unit types
if self.map_type == "infestor_viper":
if unit.unit_type == 393:
type_id = 0
else:
type_id = 1
else:
type_id = unit.unit_type - self._min_unit_type
else: # use default SC2 unit types
if self.map_type == "stalkers_and_zealots":
# id(Stalker) = 74, id(Zealot) = 73
type_id = unit.unit_type - 73
elif self.map_type == "colossi_stalkers_zealots":
# id(Stalker) = 74, id(Zealot) = 73, id(Colossus) = 4
if unit.unit_type == 4:
type_id = 0
elif unit.unit_type == 74:
type_id = 1
else:
type_id = 2
elif self.map_type == "bane":
if unit.unit_type == 9:
type_id = 0
else:
type_id = 1
elif self.map_type == "MMM":
if unit.unit_type == 51:
type_id = 0
elif unit.unit_type == 48:
type_id = 1
else:
type_id = 2
elif self.map_type == "infestor_viper":
if unit.unit_type == 393:
type_id = 0
else:
type_id = 1
else:
raise ValueError()
return type_id
def _update_obs(self, target_game_loop=0):
# Transform in the thread so it runs while waiting for other observations.
# def parallel_observe(c, f):
if self.two_player:
def parallel_observe(c):
obs = c.observe(target_game_loop=target_game_loop)
# agent_obs = f.transform_obs(obs)
return obs
# with self._metrics.measure_observation_time():
self._obses = self._parallel.run((parallel_observe, c) for c in self._controllers)
else:
self._obses = [self._controllers[0].observe()]
self._obs = self._obses[0]
def _init_ally_unit_types(self, min_unit_type):
"""Initialise ally unit types. Should be called once from the
init_units function.
"""
self._min_unit_type = min_unit_type
if self.map_type == "marines":
self.marine_id = min_unit_type
elif self.map_type == "stalkers_and_zealots":
self.stalker_id = min_unit_type
self.zealot_id = min_unit_type + 1
elif self.map_type == "colossi_stalkers_zealots":
self.colossus_id = min_unit_type
self.stalker_id = min_unit_type + 1
self.zealot_id = min_unit_type + 2
elif self.map_type == "MMM":
self.marauder_id = min_unit_type
self.marine_id = min_unit_type + 1
self.medivac_id = min_unit_type + 2
elif self.map_type == "zealots":
self.zealot_id = min_unit_type
elif self.map_type == "hydralisks":
self.hydralisk_id = min_unit_type
elif self.map_type == "stalkers":
self.stalker_id = min_unit_type
elif self.map_type == "colossus":
self.colossus_id = min_unit_type
elif self.map_type == "bane":
self.baneling_id = min_unit_type
self.zergling_id = min_unit_type + 1
def get_obs(self, is_opponent=False):
"""Returns all agent observations in a list.
NOTE: Agents should have access only to their local observations
during decentralised execution.
"""
agents_obs_list = [self.get_obs_agent(i, is_opponent) for i in range(self.n_agents)]
if self.mirror_opponent and is_opponent:
assert not self.flatten_observation
new_obs = list()
for agent_obs in agents_obs_list:
new_agent_obs = dict()
for key, feat in agent_obs.items():
feat = feat.copy()
if key == "move_feats":
can_move_right = feat[2]
can_move_left = feat[3]
feat[3] = can_move_right
feat[2] = can_move_left
elif key == "enemy_feats" or key == "ally_feats":
for unit_id in range(feat.shape[0]):
# Relative x
feat[unit_id, 2] = -feat[unit_id, 2]
new_agent_obs[key] = feat
new_obs.append(new_agent_obs)
agents_obs_list = new_obs
if not self.flatten_observation:
agents_obs_list = self._flatten_obs(agents_obs_list)
if self.obs_alone:
agents_obs_list, agents_obs_alone_list, agents_obs_alone_padding_list = list(zip(*agents_obs_list))
return np.array(agents_obs_list).astype(np.float32), np.array(agents_obs_alone_list).astype(
np.float32
), np.array(agents_obs_alone_padding_list).astype(np.float32)
else:
return np.array(agents_obs_list).astype(np.float32)
def get_obs_agent(self, agent_id, is_opponent=False):
unit = self.get_unit_by_id(agent_id, is_opponent=is_opponent)
# TODO All these function should have an opponent version
enemy_feats_dim = self.get_obs_enemy_feats_size()
ally_feats_dim = self.get_obs_ally_feats_size()
own_feats_dim = self.get_obs_own_feats_size()
enemy_feats = np.zeros(enemy_feats_dim, dtype=np.float32)
ally_feats = np.zeros(ally_feats_dim, dtype=np.float32)
own_feats = np.zeros(own_feats_dim, dtype=np.float32)
move_feats = self.action_helper.get_movement_features(agent_id, self, is_opponent)
if unit.health > 0: # otherwise dead, return all zeros
x = unit.pos.x
y = unit.pos.y
sight_range = self.unit_sight_range(agent_id)
avail_actions = self.action_helper.get_avail_agent_actions(agent_id, self, is_opponent)
# Enemy features
if is_opponent:
enemy_items = self.agents.items()
else:
enemy_items = self.enemies.items()
for e_id, e_unit in enemy_items:
e_x = e_unit.pos.x
e_y = e_unit.pos.y
dist = distance(x, y, e_x, e_y)
if (dist < sight_range and e_unit.health > 0): # visible and alive
# Sight range > shoot range
enemy_feats[e_id, 0] = avail_actions[self.action_helper.n_actions_no_attack + e_id] # available
enemy_feats[e_id, 1] = dist / sight_range # distance
enemy_feats[e_id, 2] = (e_x - x) / sight_range # relative X
enemy_feats[e_id, 3] = (e_y - y) / sight_range # relative Y
ind = 4
if self.obs_all_health:
enemy_feats[e_id, ind] = (e_unit.health / e_unit.health_max) # health
ind += 1
if self.shield_bits_enemy > 0:
max_shield = self.unit_max_shield(e_unit, not is_opponent)
enemy_feats[e_id, ind] = (e_unit.shield / max_shield) # shield
ind += 1
if self.unit_type_bits > 0:
# If enemy is computer, than use ally=False, but since now we use
# agent for enemy, ally=True
if self.two_player:
type_id = self.get_unit_type_id(e_unit, True, not is_opponent)
else:
type_id = self.get_unit_type_id(e_unit, False, False)
enemy_feats[e_id, ind + type_id] = 1 # unit type
# Ally features
al_ids = [
al_id for al_id in range((self.n_agents if not is_opponent else self.n_enemies)) if al_id != agent_id
]
for i, al_id in enumerate(al_ids):
al_unit = self.get_unit_by_id(al_id, is_opponent=is_opponent)
al_x = al_unit.pos.x
al_y = al_unit.pos.y
dist = distance(x, y, al_x, al_y)
if (dist < sight_range and al_unit.health > 0): # visible and alive
ally_feats[i, 0] = 1 # visible
ally_feats[i, 1] = dist / sight_range # distance
ally_feats[i, 2] = (al_x - x) / sight_range # relative X
ally_feats[i, 3] = (al_y - y) / sight_range # relative Y
ind = 4
if self.obs_all_health:
ally_feats[i, ind] = (al_unit.health / al_unit.health_max) # health
ind += 1
if self.shield_bits_ally > 0:
max_shield = self.unit_max_shield(al_unit, is_opponent)
ally_feats[i, ind] = (al_unit.shield / max_shield) # shield
ind += 1
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(al_unit, True, is_opponent)
ally_feats[i, ind + type_id] = 1
ind += self.unit_type_bits
# LJ fix
# if self.obs_last_action:
# ally_feats[i, ind:] = self.action_helper.get_last_action(is_opponent)[al_id]
# Own features
ind = 0
if self.obs_own_health:
own_feats[ind] = unit.health / unit.health_max
ind += 1
if self.shield_bits_ally > 0:
max_shield = self.unit_max_shield(unit, is_opponent)
own_feats[ind] = unit.shield / max_shield
ind += 1
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(unit, True, is_opponent)
own_feats[ind + type_id] = 1
ind += self.unit_type_bits
if self.obs_last_action:
own_feats[ind:] = self.action_helper.get_last_action(is_opponent)[agent_id]
if is_opponent:
agent_id_feats = np.zeros(self.n_enemies)
else:
agent_id_feats = np.zeros(self.n_agents)
agent_id_feats[agent_id] = 1
# Only set to false by outside wrapper
if self.flatten_observation:
agent_obs = np.concatenate(
(
move_feats.flatten(),
enemy_feats.flatten(),
ally_feats.flatten(),
own_feats.flatten(),
agent_id_feats,
)
)
if self.obs_timestep_number:
agent_obs = np.append(agent_obs, self._episode_steps / self.episode_limit)
if self.obs_alone:
agent_obs_alone = np.concatenate(
(
move_feats.flatten(),
enemy_feats.flatten(),
own_feats.flatten(),
agent_id_feats,
)
)
agent_obs_alone_padding = np.concatenate(
(
move_feats.flatten(),
enemy_feats.flatten(),
np.zeros_like(ally_feats.flatten()),
own_feats.flatten(),
agent_id_feats,
)
)
if self.obs_timestep_number:
agent_obs_alone = np.append(agent_obs_alone, self._episode_steps / self.episode_limit)
agent_obs_alone_padding = np.append(
agent_obs_alone_padding, self._episode_steps / self.episode_limit
)
return agent_obs, agent_obs_alone, agent_obs_alone_padding
else:
return agent_obs
else:
agent_obs = dict(
move_feats=move_feats,
enemy_feats=enemy_feats,
ally_feats=ally_feats,
own_feats=own_feats,
agent_id_feats=agent_id_feats
)
if self.obs_timestep_number:
agent_obs["obs_timestep_number"] = self._episode_steps / self.episode_limit
return agent_obs
def get_unit_by_id(self, a_id, is_opponent=False):
"""Get unit by ID."""
if is_opponent:
return self.enemies[a_id]
return self.agents[a_id]
def get_obs_enemy_feats_size(self):
""" Returns the dimensions of the matrix containing enemy features.
Size is n_enemies x n_features.
"""
nf_en = 4 + self.unit_type_bits
if self.obs_all_health:
nf_en += 1 + self.shield_bits_enemy
return self.n_enemies, nf_en
def get_obs_ally_feats_size(self):
"""Returns the dimensions of the matrix containing ally features.
Size is n_allies x n_features.
"""
nf_al = 4 + self.unit_type_bits
if self.obs_all_health:
nf_al += 1 + self.shield_bits_ally
# LJ fix
# if self.obs_last_action:
# nf_al += self.n_actions
return self.n_agents - 1, nf_al
def get_obs_own_feats_size(self):
"""Returns the size of the vector containing the agents' own features.
"""
own_feats = self.unit_type_bits
if self.obs_own_health:
own_feats += 1 + self.shield_bits_ally
if self.obs_timestep_number:
own_feats += 1
if self.obs_last_action:
own_feats += self.n_actions
return own_feats
def get_obs_move_feats_size(self):
"""Returns the size of the vector containing the agents's movement-related features."""
return self.action_helper.get_obs_move_feats_size()
def get_state_size(self, is_opponent=False):
"""Returns the size of the global state."""
if self.obs_instead_of_state:
return self.get_obs_size(is_opponent) * self.n_agents
nf_al = 4 + self.shield_bits_ally + self.unit_type_bits
nf_en = 3 + self.shield_bits_enemy + self.unit_type_bits
enemy_state = self.n_enemies * nf_en
ally_state = self.n_agents * nf_al
size = enemy_state + ally_state
if self.state_last_action:
if is_opponent:
size += self.n_enemies * self.n_actions_opponent
else:
size += self.n_agents * self.n_actions
if self.state_timestep_number:
size += 1
return size
def get_obs_size(self, is_opponent=False):
# TODO suppose the agents formation are same for both opponent and me. This can be extended in future.
"""Returns the size of the observation."""
own_feats = self.get_obs_own_feats_size()
move_feats = self.get_obs_move_feats_size()
n_enemies, n_enemy_feats = self.get_obs_enemy_feats_size()
n_allies, n_ally_feats = self.get_obs_ally_feats_size()
enemy_feats = n_enemies * n_enemy_feats
ally_feats = n_allies * n_ally_feats
if is_opponent:
agent_id_feats = self.n_enemies
else:
agent_id_feats = self.n_agents
return move_feats + enemy_feats + ally_feats + own_feats + agent_id_feats
def get_obs_alone_size(self, is_opponent=False):
# TODO suppose the agents formation are same for both opponent and me. This can be extended in future.
"""Returns the size of the observation."""
own_feats = self.get_obs_own_feats_size()
move_feats = self.get_obs_move_feats_size()
n_enemies, n_enemy_feats = self.get_obs_enemy_feats_size()
enemy_feats = n_enemies * n_enemy_feats
if is_opponent:
agent_id_feats = self.n_enemies
else:
agent_id_feats = self.n_agents
return move_feats + enemy_feats + own_feats + agent_id_feats
def get_state(self, is_opponent=False):
if self.obs_instead_of_state:
obs_concat = np.concatenate(self.get_obs(), axis=0).astype(np.float32)
return obs_concat
nf_al = 4 + self.shield_bits_ally + self.unit_type_bits
nf_en = 3 + self.shield_bits_enemy + self.unit_type_bits
ally_state = np.zeros((self.n_agents, nf_al))
enemy_state = np.zeros((self.n_enemies, nf_en))
center_x = self.map_x / 2
center_y = self.map_y / 2
if is_opponent:
iterator = self.enemies.items()
else:
iterator = self.agents.items()
for al_id, al_unit in iterator:
if al_unit.health > 0:
x = al_unit.pos.x
y = al_unit.pos.y
max_cd = self.unit_max_cooldown(al_unit, is_opponent=is_opponent)
ally_state[al_id, 0] = (al_unit.health / al_unit.health_max) # health
if (self.map_type == "MMM"
and al_unit.unit_type == (self.medivac_id_opponent if is_opponent else self.medivac_id)):
ally_state[al_id, 1] = al_unit.energy / max_cd # energy
else:
ally_state[al_id, 1] = (al_unit.weapon_cooldown / max_cd) # cooldown
ally_state[al_id, 2] = (x - center_x) / self.max_distance_x # relative X
ally_state[al_id, 3] = (y - center_y) / self.max_distance_y # relative Y
ind = 4
if self.shield_bits_ally > 0:
max_shield = self.unit_max_shield(al_unit, is_opponent=is_opponent)
ally_state[al_id, ind] = (al_unit.shield / max_shield) # shield
ind += 1
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(al_unit, True, is_opponent=is_opponent)
ally_state[al_id, ind + type_id] = 1
if is_opponent:
iterator = self.agents.items()
else:
iterator = self.enemies.items()
for e_id, e_unit in iterator:
if e_unit.health > 0:
x = e_unit.pos.x
y = e_unit.pos.y
enemy_state[e_id, 0] = (e_unit.health / e_unit.health_max) # health
enemy_state[e_id, 1] = (x - center_x) / self.max_distance_x # relative X
enemy_state[e_id, 2] = (y - center_y) / self.max_distance_y # relative Y
ind = 3
if self.shield_bits_enemy > 0:
max_shield = self.unit_max_shield(e_unit, is_opponent=False)
enemy_state[e_id, ind] = (e_unit.shield / max_shield) # shield
ind += 1
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(e_unit, True if self.two_player else False, is_opponent=False)
enemy_state[e_id, ind + type_id] = 1
last_action = self.action_helper.get_last_action(is_opponent)
if self.flatten_observation:
state = np.append(ally_state.flatten(), enemy_state.flatten())
if self.state_last_action:
state = np.append(state, last_action.flatten())
if self.state_timestep_number:
state = np.append(state, self._episode_steps / self.episode_limit)
state = state.astype(dtype=np.float32)
else:
state = dict(ally_state=ally_state, enemy_state=enemy_state)
if self.state_last_action:
state["last_action"] = last_action
if self.state_timestep_number:
state["state_timestep_number"] = self._episode_steps / self.episode_limit
if self.mirror_opponent and is_opponent:
assert not self.flatten_observation
new_state = dict()
for key, s in state.items():
s = s.copy()
if key == "ally_state":
# relative x
for unit_id in range(s.shape[0]):
s[unit_id, 2] = -s[unit_id, 2]
elif key == "enemy_state":
# relative x
for unit_id in range(s.shape[0]):
s[unit_id, 1] = -s[unit_id, 1]
# key == "last_action" is processed in SMACAction
new_state[key] = s
state = new_state
if not self.flatten_observation:
state = self._flatten_state(state)
return np.array(state).astype(np.float32)
def get_global_special_state(self, is_opponent=False):
"""Returns all agent observations in a list.
NOTE: Agents should have access only to their local observations
during decentralised execution.
"""
agents_obs_list = [self.get_state_agent(i, is_opponent) for i in range(self.n_agents)]
return np.array(agents_obs_list).astype(np.float32)
def get_global_special_state_size(self, is_opponent=False):
enemy_feats_dim = self.get_state_enemy_feats_size()
enemy_feats_dim = reduce(lambda x, y: x * y, enemy_feats_dim)
ally_feats_dim = self.get_state_ally_feats_size()
ally_feats_dim = reduce(lambda x, y: x * y, ally_feats_dim)
own_feats_dim = self.get_state_own_feats_size()
size = enemy_feats_dim + ally_feats_dim + own_feats_dim + self.n_agents
if self.state_timestep_number:
size += 1
return size
def get_state_agent(self, agent_id, is_opponent=False):
"""Returns observation for agent_id. The observation is composed of:
- agent movement features (where it can move to, height information and pathing grid)
- enemy features (available_to_attack, health, relative_x, relative_y, shield, unit_type)
- ally features (visible, distance, relative_x, relative_y, shield, unit_type)
- agent unit features (health, shield, unit_type)
All of this information is flattened and concatenated into a list,
in the aforementioned order. To know the sizes of each of the
features inside the final list of features, take a look at the
functions ``get_obs_move_feats_size()``,
``get_obs_enemy_feats_size()``, ``get_obs_ally_feats_size()`` and
``get_obs_own_feats_size()``.
The size of the observation vector may vary, depending on the
environment configuration and type of units present in the map.
For instance, non-Protoss units will not have shields, movement
features may or may not include terrain height and pathing grid,
unit_type is not included if there is only one type of unit in the
map etc.).
NOTE: Agents should have access only to their local observations
during decentralised execution.
"""
if self.obs_instead_of_state:
obs_concat = np.concatenate(self.get_obs(), axis=0).astype(np.float32)
return obs_concat
unit = self.get_unit_by_id(agent_id)
enemy_feats_dim = self.get_state_enemy_feats_size()
ally_feats_dim = self.get_state_ally_feats_size()
own_feats_dim = self.get_state_own_feats_size()
enemy_feats = np.zeros(enemy_feats_dim, dtype=np.float32)
ally_feats = np.zeros(ally_feats_dim, dtype=np.float32)
own_feats = np.zeros(own_feats_dim, dtype=np.float32)
agent_id_feats = np.zeros(self.n_agents, dtype=np.float32)
center_x = self.map_x / 2
center_y = self.map_y / 2
if (self.death_mask and unit.health > 0) or (not self.death_mask): # otherwise dead, return all zeros
x = unit.pos.x
y = unit.pos.y
sight_range = self.unit_sight_range(agent_id)
last_action = self.action_helper.get_last_action(is_opponent)
# Movement features
avail_actions = self.get_avail_agent_actions(agent_id)
# Enemy features
for e_id, e_unit in self.enemies.items():
e_x = e_unit.pos.x
e_y = e_unit.pos.y
dist = self.distance(x, y, e_x, e_y)
if e_unit.health > 0: # visible and alive
# Sight range > shoot range
if unit.health > 0:
enemy_feats[e_id, 0] = avail_actions[self.action_helper.n_actions_no_attack + e_id] # available
enemy_feats[e_id, 1] = dist / sight_range # distance
enemy_feats[e_id, 2] = (e_x - x) / sight_range # relative X
enemy_feats[e_id, 3] = (e_y - y) / sight_range # relative Y
if dist < sight_range:
enemy_feats[e_id, 4] = 1 # visible
ind = 5
if self.obs_all_health:
enemy_feats[e_id, ind] = (e_unit.health / e_unit.health_max) # health
ind += 1
if self.shield_bits_enemy > 0:
max_shield = self.unit_max_shield(e_unit)
enemy_feats[e_id, ind] = (e_unit.shield / max_shield) # shield
ind += 1
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(e_unit, False)
enemy_feats[e_id, ind + type_id] = 1 # unit type
ind += self.unit_type_bits
if self.add_center_xy:
enemy_feats[e_id, ind] = (e_x - center_x) / self.max_distance_x # center X
enemy_feats[e_id, ind + 1] = (e_y - center_y) / self.max_distance_y # center Y
# Ally features
al_ids = [al_id for al_id in range(self.n_agents) if al_id != agent_id]
for i, al_id in enumerate(al_ids):
al_unit = self.get_unit_by_id(al_id)
al_x = al_unit.pos.x
al_y = al_unit.pos.y
dist = self.distance(x, y, al_x, al_y)
max_cd = self.unit_max_cooldown(al_unit)
if al_unit.health > 0: # visible and alive
if unit.health > 0:
if dist < sight_range:
ally_feats[i, 0] = 1 # visible
ally_feats[i, 1] = dist / sight_range # distance
ally_feats[i, 2] = (al_x - x) / sight_range # relative X
ally_feats[i, 3] = (al_y - y) / sight_range # relative Y
if (self.map_type == "MMM" and al_unit.unit_type == self.medivac_id):
ally_feats[i, 4] = al_unit.energy / max_cd # energy
else:
ally_feats[i, 4] = (al_unit.weapon_cooldown / max_cd) # cooldown
ind = 5
if self.obs_all_health:
ally_feats[i, ind] = (al_unit.health / al_unit.health_max) # health
ind += 1
if self.shield_bits_ally > 0:
max_shield = self.unit_max_shield(al_unit)
ally_feats[i, ind] = (al_unit.shield / max_shield) # shield
ind += 1
if self.add_center_xy:
ally_feats[i, ind] = (al_x - center_x) / self.max_distance_x # center X
ally_feats[i, ind + 1] = (al_y - center_y) / self.max_distance_y # center Y
ind += 2
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(al_unit, True)
ally_feats[i, ind + type_id] = 1
ind += self.unit_type_bits
if self.state_last_action:
ally_feats[i, ind:] = last_action[al_id]
# Own features
ind = 0
own_feats[0] = 1 # visible
own_feats[1] = 0 # distance
own_feats[2] = 0 # X
own_feats[3] = 0 # Y
ind = 4
if self.obs_own_health:
own_feats[ind] = unit.health / unit.health_max
ind += 1
if self.shield_bits_ally > 0:
max_shield = self.unit_max_shield(unit)
own_feats[ind] = unit.shield / max_shield
ind += 1
if self.add_center_xy:
own_feats[ind] = (x - center_x) / self.max_distance_x # center X
own_feats[ind + 1] = (y - center_y) / self.max_distance_y # center Y
ind += 2
if self.unit_type_bits > 0:
type_id = self.get_unit_type_id(unit, True)
own_feats[ind + type_id] = 1
ind += self.unit_type_bits
if self.state_last_action:
own_feats[ind:] = last_action[agent_id]
state = np.concatenate((ally_feats.flatten(), enemy_feats.flatten(), own_feats.flatten()))
# Agent id features
if self.state_agent_id:
agent_id_feats[agent_id] = 1.
state = np.append(state, agent_id_feats.flatten())
if self.state_timestep_number:
state = np.append(state, self._episode_steps / self.episode_limit)
return state
def get_state_enemy_feats_size(self):
""" Returns the dimensions of the matrix containing enemy features.
Size is n_enemies x n_features.
"""
nf_en = 5 + self.unit_type_bits
if self.obs_all_health:
nf_en += 1 + self.shield_bits_enemy
if self.add_center_xy:
nf_en += 2
return self.n_enemies, nf_en
def get_state_ally_feats_size(self):
"""Returns the dimensions of the matrix containing ally features.
Size is n_allies x n_features.
"""
nf_al = 5 + self.unit_type_bits
if self.obs_all_health:
nf_al += 1 + self.shield_bits_ally
if self.state_last_action:
nf_al += self.n_actions
if self.add_center_xy:
nf_al += 2
return self.n_agents - 1, nf_al
def get_state_own_feats_size(self):
"""Returns the size of the vector containing the agents' own features.
"""
own_feats = 4 + self.unit_type_bits
if self.obs_own_health:
own_feats += 1 + self.shield_bits_ally
if self.state_last_action:
own_feats += self.n_actions
if self.add_center_xy:
own_feats += 2
return own_feats
@staticmethod
def distance(x1, y1, x2, y2):
"""Distance between two points."""
return math.hypot(x2 - x1, y2 - y1)
def unit_max_cooldown(self, unit, is_opponent=False):
"""Returns the maximal cooldown for a unit."""
if is_opponent:
switcher = {
self.marine_id_opponent: 15,
self.marauder_id_opponent: 25,
self.medivac_id_opponent: 200, # max energy
self.stalker_id_opponent: 35,
self.zealot_id_opponent: 22,
self.colossus_id_opponent: 24,
self.hydralisk_id_opponent: 10,
self.zergling_id_opponent: 11,
self.baneling_id_opponent: 1
}
else:
switcher = {
self.marine_id: 15,
self.marauder_id: 25,
self.medivac_id: 200, # max energy
self.stalker_id: 35,
self.zealot_id: 22,
self.colossus_id: 24,
self.hydralisk_id: 10,
self.zergling_id: 11,
self.baneling_id: 1
}
return switcher.get(unit.unit_type, 15)
def update_units(self):
"""Update units after an environment step.
This function assumes that self._obs is up-to-date.
"""
n_ally_alive = 0
n_enemy_alive = 0
# Store previous state
self.previous_ally_units = copy.deepcopy(self.agents)
self.previous_enemy_units = copy.deepcopy(self.enemies)
for al_id, al_unit in self.agents.items():
updated = False
for unit in self._obs.observation.raw_data.units:
if al_unit.tag == unit.tag:
self.agents[al_id] = unit
updated = True
n_ally_alive += 1
break
if not updated: # dead
al_unit.health = 0
for e_id, e_unit in self.enemies.items():
updated = False
for unit in self._obs.observation.raw_data.units:
if e_unit.tag == unit.tag:
self.enemies[e_id] = unit
updated = True
n_enemy_alive += 1
break
if not updated: # dead
e_unit.health = 0
if (n_ally_alive == 0 and n_enemy_alive > 0 or self.only_medivac_left(ally=True)):
return -1 # lost
if (n_ally_alive > 0 and n_enemy_alive == 0 or self.only_medivac_left(ally=False)):
return 1 # won
if n_ally_alive == 0 and n_enemy_alive == 0:
return 0
return None
def only_medivac_left(self, ally):
"""Check if only Medivac units are left."""
if self.map_type != "MMM":
return False
if ally:
units_alive = [
a for a in self.agents.values()
if (a.health > 0 and a.unit_type != self.medivac_id and a.unit_type != self.medivac_id_opponent
) # <<== add medivac_id_opponent
]
if len(units_alive) == 0:
return True
return False
else:
units_alive = [
a for a in self.enemies.values()
if (a.health > 0 and a.unit_type != self.medivac_id and a.unit_type != self.medivac_id_opponent)
]
if len(units_alive) == 1 and units_alive[0].unit_type == 54:
return True
return False
@property
def n_actions(self):
return self.action_helper.n_actions
@property
def n_actions_opponent(self):
return self.n_actions
# Workaround
def get_avail_agent_actions(self, agent_id, is_opponent=False):
return self.action_helper.get_avail_agent_actions(agent_id, self, is_opponent)
def unit_sight_range(self, agent_id=None):
"""Returns the sight range for an agent."""
return 9
@staticmethod
def _flatten_obs(obs):
def _get_keys(agent_obs):
keys = ["move_feats", "enemy_feats", "ally_feats", "own_feats", "agent_id_feats"]
if "obs_timestep_number" in agent_obs:
keys.append("obs_timestep_number")
return keys
return _flatten(obs, _get_keys)
@staticmethod
def _flatten_state(state):
def _get_keys(s):
keys = ["ally_state", "enemy_state"]
if "last_action" in s:
keys.append("last_action")
if "state_timestep_number" in s:
keys.append("state_timestep_number")
return keys
return _flatten([state], _get_keys)[0]
def get_avail_actions(self, is_opponent=False):
ava_action = self.action_helper.get_avail_actions(self, is_opponent)
ava_action = np.array(ava_action).astype(np.float32)
return ava_action
def get_obs_space(self, is_opponent=False):
T = EnvElementInfo
agent_num = self.n_enemies if is_opponent else self.n_agents
if self.obs_alone:
obs_space = T(
{
'agent_state': (agent_num, self.get_obs_size(is_opponent)),
'agent_alone_state': (agent_num, self.get_obs_alone_size(is_opponent)),
'agent_alone_padding_state': (agent_num, self.get_obs_size(is_opponent)),
'global_state': (self.get_state_size(is_opponent), ),
'action_mask': (agent_num, *self.action_helper.info().shape),
},
None,
)
else:
if self.special_global_state:
obs_space = T(
{
'agent_state': (agent_num, self.get_obs_size(is_opponent)),
'global_state': (agent_num, self.get_global_special_state_size(is_opponent)),
'action_mask': (agent_num, *self.action_helper.info().shape),
},
None,
)
else:
obs_space = T(
{
'agent_state': (agent_num, self.get_obs_size(is_opponent)),
'global_state': (self.get_state_size(is_opponent), ),
'action_mask': (agent_num, *self.action_helper.info().shape),
},
None,
)
return obs_space
@property
def observation_space(self):
return self._observation_space
@property
def action_space(self):
return self._action_space
@property
def reward_space(self):
return self._reward_space
def __repr__(self):
return "DI-engine SMAC Env"
def _flatten(obs, get_keys):
new_obs = list()
for agent_obs in obs:
keys = get_keys(agent_obs)
new_agent_obs = np.concatenate([agent_obs[feat_key].flatten() for feat_key in keys])
new_obs.append(new_agent_obs)
return new_obs
SMACTimestep = SMACEnv.SMACTimestep
SMACEnvInfo = SMACEnv.SMACEnvInfo
|