File size: 11,656 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 |
import json
import os
import random
import re
import time
from functools import lru_cache
import torch
import numpy as np
import openai
try:
import transformers
except ImportError:
import sys
from ditk import logging
logging.warning("not found transformer, please install it using: pip install transformers")
sys.exit(1)
def sample_logits(out: torch.Tensor, temperature: float = 1.0, top_p: float = 0.8) -> int:
# Sample an action given the logits.
probs = torch.softmax(out, dim=-1).cpu().numpy()
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return out
def calc_rwkv(
model: transformers.RwkvForCausalLM,
tokenizer: transformers.AutoTokenizer,
prompt: str,
max_len: int = 10
) -> str:
# Use RWKV to generate sentence.
orig_len = len(prompt)
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
outputs = model(**inputs, labels=inputs["input_ids"])
out, state = outputs.logits, outputs.state
# Recurrent generation.
with torch.no_grad():
for i in range(max_len):
token = sample_logits(out[0, -1])
tmp = tokenizer.decode([token])
prompt = prompt + tmp
inputs = tokenizer(prompt, return_tensors="pt").to('cuda')
outputs = model(**inputs, labels=inputs["input_ids"])
out, state = outputs.logits, outputs.state
return prompt[orig_len:]
def calc_internlm(model, tokenizer, prompt: str, args):
inputs = tokenizer(prompt, return_tensors="pt")
for k, v in inputs.items():
inputs[k] = v.cuda()
gen_kwargs = {
"max_length": args.max_tokens,
"top_p": args.top_p,
"temperature": args.temperature,
"do_sample": True,
"repetition_penalty": args.frequency_penalty
}
output = model.generate(**inputs, **gen_kwargs)
output = tokenizer.decode(output)
return output
def load_data(args: dict) -> tuple:
# Load tabmwp dataset.
random.seed(args.seed)
data_root = 'dizoo/tabmwp/data'
if not os.path.exists(data_root):
os.mkdir(data_root)
if not os.path.exists(os.path.join(data_root, f'problems_train.json')):
os.system(
f'wget https://opendilab.net/download/DI-zoo/tabmwp/problems_train.json -O ' +
os.path.join(data_root, f'problems_train.json') + ' --no-check-certificate'
)
problems = json.load(open(os.path.join(data_root, f'problems_train.json')))
pids = list(problems.keys())
samples = random.sample(pids, args.train_number + args.cand_number) # random sample
train_pids = samples[:args.train_number]
cand_pids = samples[args.train_number:]
return problems, cand_pids, train_pids
def get_gpt3_output(prompt: str, args: dict) -> str:
return call_gpt3(
args.engine, prompt, args.temperature, args.max_tokens, args.top_p, args.frequency_penalty,
args.presence_penalty
)
@lru_cache(maxsize=10000)
def call_gpt3(
engine: str, prompt: str, temperature: float, max_tokens: int, top_p: float, frequency_penalty: float,
presence_penalty: float
) -> str:
patience = 100
while True:
try:
response = openai.Completion.create(
engine=engine,
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
stop=["\n"]
)
output = response["choices"][0]["text"].strip()
break
except Exception:
patience -= 1
if not patience:
print("!!! running out of patience waiting for OpenAI")
else:
time.sleep(0.1)
return output
def get_table_text(problem: dict) -> str:
table = problem['table']
title = problem['table_title']
if title and len(title) > 0:
table = f"[TITLE]: {title}\n{table}"
return table
def get_question_text(problem: dict, option_inds: list) -> str:
question = problem['question']
unit = problem['unit']
if unit and len(unit) > 0:
question = f"{question} (Unit: {unit})"
choices = problem['choices']
if choices and len(choices) > 0:
choice_list = []
for i, c in enumerate(choices):
choice_list.append("({}) {}".format(option_inds[i], c))
options = " ".join(choice_list)
question = f"{question}\nOptions: {options}"
return question
def get_answer(problem: dict) -> str:
return problem['answer']
def get_solution_text(problem: dict) -> str:
# GPT-3 can generate the solution with more tokens
solution = problem['solution'].replace("\n", "\\n")
return solution
def create_one_example(
format: str, table: str, question: str, answer: str, solution: str, test_example: bool = True
) -> str:
# Using template to generate one prompt example.
input_format, output_format = format.split("-") # e.g., "TQ-A"
elements = {
"Q": f"Question: {question}",
"T": f"Table: {table}",
"S": f"Solution: {solution}",
"A": f"Answer: The answer is {answer}.",
"AS": f"Answer: The answer is {answer}. BECAUSE: {solution}",
"SA": f"Answer: {solution} The answer is {answer}."
}
# Input
input = "\n".join(elements[label] for label in input_format)
# Output
if test_example:
output = "Answer:"
else:
output = elements[output_format]
# Prompt text
text = input + "\n" + output
text = text.replace(" ", " ").strip()
return text
def build_prompt(problems: list, shot_pids: list, test_pid: int, args: dict) -> str:
# Given ids, generate the complete prompt. That is, the input to LM.
examples = []
pids = shot_pids + [test_pid]
# n-shot training examples
for pid in pids:
problem = problems[pid]
table = get_table_text(problem)
question = get_question_text(problem, args.option_inds)
answer = get_answer(problem)
solution = get_solution_text(problems[pid])
if pid == test_pid:
assert pid not in shot_pids
example = create_one_example(args.prompt_format, table, question, answer, solution, test_example=True)
else:
example = create_one_example(args.prompt_format, table, question, answer, solution, test_example=False)
examples.append(example)
# create the prompt input
prompt_input = '\n\n'.join(examples)
return prompt_input
def extract_prediction(output: str, options: list, option_inds: list) -> str:
idx = output.find('\n')
if idx > 0:
output = output[:idx]
idx = output.find('=')
if idx > 0:
output = output[idx + 1:].strip()
# $\\frac{16}{95}$ -> 16/95
output = re.sub(r"\$?\\frac\{([\d\.\,\-]+)\}\{([\d\.\,]+)\}\$?", r"\1/\2", output)
output = re.sub(r"(?<![AP]\.M)\.$", "", output)
output = re.sub(r"(?<=\d)[\=](?=[\-\$\d])", " = ", output)
output = re.sub(r"\u2212", "-", output)
# Multi-choice questions
if options:
patterns = [
r'^\(([A-Za-z])\)$', # "(b)", "(B)"
r'^([A-Za-z])$', # "b", "B"
r'^([A-Za-z]). ', # "b", "B"
r'[Th]he answer is ([A-Z])', # "The answer is B"
r'^\(([A-Za-z])\) [\s\S]+$', # "(A) XXXXX"
r'[Th]he answer is \(([A-Za-z])\) [\s\S]+$', # "The answer is (B) XXXXX."
]
# have "X" in the output
for p in patterns:
pattern = re.compile(p)
res = pattern.findall(output)
if len(res) > 0:
pred = res[0].upper() # e.g., "B"
if pred in option_inds:
ind = option_inds.index(pred) # 1
if ind >= len(options):
ind = random.choice(range(len(options)))
predition = options[ind]
return predition
# find the most similar options
scores = [score_string_similarity(x, output) for x in options]
max_idx = int(np.argmax(scores)) # json does not recognize NumPy data types
predition = options[max_idx]
return predition
else:
# free_text QA problems, numeric answer
patterns = [
# r'^\([A-Za-z]\) ([\s\S]+)$', # "(A) XXXXX"
# r'[Th]he answer is \([A-Za-z]\) ([\s\S]+)$', # "The answer is (B) XXXXX."
r'[Th]he answer is ([\s\S]+)$', # "The answer is XXXXX.",
r'[Th]he table shows that ([\d\$\.\,\/\:]+) ',
r' = ([\d\$\.\,\/\:]+)', # "= $1.40"
r'(?<= be| is) ([\-\d\$\.\,\/\:]{0,}[\d]+)', # "will be $1.40"
r'(?<= are| was) ([\-\d\$\.\,\/\:]{0,}[\d]+)', # "are $1.40"
r'(?<= were) ([\-\d\$\.\,\/\:]{0,}[\d]+)', # "are $1.40"
r' ([\d\$\.\,\/\:]+ [AP]\.M\.)', # 7:25 P.M.
r'([\-\d\$\.\,\/\:]{0,}[\d]+)', # 14.5
]
for p in patterns:
pattern = re.compile(p)
res = pattern.findall(output)
if len(res) > 0:
predition = res[-1].strip()
if predition.endswith(".") and ".M." not in predition:
predition = predition[:-1]
return predition
return output
def normalize_answer(text: str, unit: str) -> str:
# ["1,000", "123", "3/4", "56.456", "$56.4", "-3", "-10.02", "-3/2"]
text = re.sub("^[\$]", "", text)
text = re.sub("[\,\.\,\/]$", "", text)
result = re.match("^[-+]?[\d,./]+$", text)
if result is not None:
# is number?
text = text.replace(",", "")
result = re.match("[-+]?\d+$", text)
try:
if result is not None:
number = int(text)
elif "/" in text:
nums = text.split("/")
number = round(float(nums[0]) / float(nums[1]), 3)
else:
number = round(float(text), 3)
number = str(number)
number = re.sub(r"\.[0]+$", "", number)
return number
except:
return text
else:
# is text
if unit:
text = text.replace(unit, "").strip()
return text
def score_string_similarity(str1: str, str2: str) -> float:
if str1 == str2:
return 2.0
if " " in str1 or " " in str2:
str1_split = str1.split(" ")
str2_split = str2.split(" ")
overlap = list(set(str1_split) & set(str2_split))
return len(overlap) / max(len(str1_split), len(str2_split))
else:
if str1 == str2:
return 1.0
else:
return 0.0
def create_example_from_pid(pid: int, problems: list, args: dict, test: bool = False) -> str:
problem = problems[pid]
table = get_table_text(problem)
question = get_question_text(problem, args.option_inds)
answer = get_answer(problem)
solution = get_solution_text(problems[pid])
if test:
example = create_one_example(args.prompt_format, table, question, answer, solution, test_example=True)
else:
example = create_one_example(args.prompt_format, table, question, answer, solution, test_example=False)
return example
|