File size: 37,628 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import copy
from collections import namedtuple
from typing import List, Dict, Any, Tuple, Union, Optional

import torch

from ding.model import model_wrap
from ding.rl_utils import q_nstep_td_data, q_nstep_td_error, q_nstep_td_error_with_rescale, get_nstep_return_data, \
    get_train_sample
from ding.torch_utils import Adam, to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import timestep_collate, default_collate, default_decollate
from .base_policy import Policy


@POLICY_REGISTRY.register('r2d2')
class R2D2Policy(Policy):
    """
    Overview:
        Policy class of R2D2, from paper `Recurrent Experience Replay in Distributed Reinforcement Learning` .
        R2D2 proposes that several tricks should be used to improve upon DRQN, namely some recurrent experience replay \
        tricks and the burn-in mechanism for off-policy training.
    Config:
        == ==================== ======== ============== ======================================== =======================
        ID Symbol               Type     Default Value  Description                              Other(Shape)
        == ==================== ======== ============== ======================================== =======================
        1  ``type``             str      r2d2           | RL policy register name, refer to      | This arg is optional,
                                                        | registry ``POLICY_REGISTRY``           | a placeholder
        2  ``cuda``             bool     False          | Whether to use cuda for network        | This arg can be diff-
                                                                                                 | erent from modes
        3  ``on_policy``        bool     False          | Whether the RL algorithm is on-policy
                                                        | or off-policy
        4  ``priority``         bool     False          | Whether use priority(PER)              | Priority sample,
                                                                                                 | update priority
        5  | ``priority_IS``    bool     False          | Whether use Importance Sampling Weight
           | ``_weight``                                | to correct biased update. If True,
                                                        | priority must be True.
        6  | ``discount_``      float    0.997,         | Reward's future discount factor, aka.  | May be 1 when sparse
           | ``factor``                  [0.95, 0.999]  | gamma                                  | reward env
        7  ``nstep``            int      3,             | N-step reward discount sum for target
                                         [3, 5]         | q_value estimation
        8  ``burnin_step``      int      2              | The timestep of burnin operation,
                                                        | which is designed to RNN hidden state
                                                        | difference caused by off-policy
        9  | ``learn.update``   int      1              | How many updates(iterations) to train  | This args can be vary
           | ``per_collect``                            | after collector's one collection. Only | from envs. Bigger val
                                                        | valid in serial training               | means more off-policy
        10 | ``learn.batch_``   int      64             | The number of samples of an iteration
           | ``size``
        11 | ``learn.learning`` float    0.001          | Gradient step length of an iteration.
           | ``_rate``
        12 | ``learn.value_``   bool     True           | Whether use value_rescale function for
           | ``rescale``                                | predicted value
        13 | ``learn.target_``  int      100            | Frequence of target network update.    | Hard(assign) update
           | ``update_freq``
        14 | ``learn.ignore_``  bool     False          | Whether ignore done for target value   | Enable it for some
           | ``done``                                   | calculation.                           | fake termination env
        15 ``collect.n_sample`` int      [8, 128]       | The number of training samples of a    | It varies from
                                                        | call of collector.                     | different envs
        16 | ``collect.unroll`` int      1              | unroll length of an iteration          | In RNN, unroll_len>1
           | ``_len``
        == ==================== ======== ============== ======================================== =======================
    """
    config = dict(
        # (str) RL policy register name (refer to function "POLICY_REGISTRY").
        type='r2d2',
        # (bool) Whether to use cuda for network.
        cuda=False,
        # (bool) Whether the RL algorithm is on-policy or off-policy.
        on_policy=False,
        # (bool) Whether to use priority(priority sample, IS weight, update priority)
        priority=True,
        # (bool) Whether to use Importance Sampling Weight to correct biased update. If True, priority must be True.
        priority_IS_weight=True,
        # (float) Reward's future discount factor, aka. gamma.
        discount_factor=0.997,
        # (int) N-step reward for target q_value estimation
        nstep=5,
        # (int) the timestep of burnin operation, which is designed to RNN hidden state difference
        # caused by off-policy
        burnin_step=20,
        # (int) the trajectory length to unroll the RNN network minus
        # the timestep of burnin operation
        learn_unroll_len=80,
        # learn_mode config
        learn=dict(
            # (int) The number of training updates (iterations) to perform after each data collection by the collector.
            # A larger "update_per_collect" value implies a more off-policy approach.
            # The whole pipeline process follows this cycle: collect data -> update policy -> collect data -> ...
            update_per_collect=1,
            # (int) The number of samples in a training batch.
            batch_size=64,
            # (float) The step size of gradient descent, determining the rate of learning.
            learning_rate=0.0001,
            # (int) Frequence of target network update.
            # target_update_freq=100,
            target_update_theta=0.001,
            # (bool) whether use value_rescale function for predicted value
            value_rescale=True,
            # (bool) Whether ignore done(usually for max step termination env).
            # Note: Gym wraps the MuJoCo envs by default with TimeLimit environment wrappers.
            # These limit HalfCheetah, and several other MuJoCo envs, to max length of 1000.
            # However, interaction with HalfCheetah always gets done with done is False,
            # Since we inplace done==True with done==False to keep
            # TD-error accurate computation(``gamma * (1 - done) * next_v + reward``),
            # when the episode step is greater than max episode step.
            ignore_done=False,
        ),
        # collect_mode config
        collect=dict(
            # (int) How many training samples collected in one collection procedure.
            # In each collect phase, we collect a total of <n_sample> sequence samples.
            n_sample=32,
            # (bool) It is important that set key traj_len_inf=True here,
            # to make sure self._traj_len=INF in serial_sample_collector.py.
            # In R2D2 policy, for each collect_env, we want to collect data of length self._traj_len=INF
            # unless the episode enters the 'done' state.
            traj_len_inf=True,
            # (int) `env_num` is used in hidden state, should equal to that one in env config (e.g. collector_env_num).
            # User should specify this value in user config. `None` is a placeholder.
            env_num=None,
        ),
        # eval_mode config
        eval=dict(
            # (int) `env_num` is used in hidden state, should equal to that one in env config (e.g. evaluator_env_num).
            # User should specify this value in user config.
            env_num=None,
        ),
        other=dict(
            # Epsilon greedy with decay.
            eps=dict(
                # (str) Type of decay. Supports either 'exp' (exponential) or 'linear'.
                type='exp',
                # (float) Initial value of epsilon at the start.
                start=0.95,
                # (float) Final value of epsilon after decay.
                end=0.05,
                # (int) The number of environment steps over which epsilon should decay.
                decay=10000,
            ),
            replay_buffer=dict(
                # (int) Maximum size of replay buffer. Usually, larger buffer size is better.
                replay_buffer_size=10000,
            ),
        ),
    )

    def default_model(self) -> Tuple[str, List[str]]:
        """
        Overview:
            Return this algorithm default neural network model setting for demonstration. ``__init__`` method will \
            automatically call this method to get the default model setting and create model.
        Returns:
            - model_info (:obj:`Tuple[str, List[str]]`): The registered model name and model's import_names.

        .. note::
            The user can define and use customized network model but must obey the same inferface definition indicated \
            by import_names path. For example about R2D2, its registered name is ``drqn`` and the import_names is \
            ``ding.model.template.q_learning``.
        """
        return 'drqn', ['ding.model.template.q_learning']

    def _init_learn(self) -> None:
        """
        Overview:
            Initialize the learn mode of policy, including some attributes and modules. For R2D2, it mainly contains \
            optimizer, algorithm-specific arguments such as burnin_step, value_rescale and gamma, main and target \
            model. Because of the use of RNN, all the models should be wrappered with ``hidden_state`` which needs to \
            be initialized with proper size.
            This method will be called in ``__init__`` method if ``learn`` field is in ``enable_field``.

        .. note::
            For the member variables that need to be saved and loaded, please refer to the ``_state_dict_learn`` \
            and ``_load_state_dict_learn`` methods.

        .. note::
            For the member variables that need to be monitored, please refer to the ``_monitor_vars_learn`` method.

        .. note::
            If you want to set some spacial member variables in ``_init_learn`` method, you'd better name them \
            with prefix ``_learn_`` to avoid conflict with other modes, such as ``self._learn_attr1``.
        """
        self._priority = self._cfg.priority
        self._priority_IS_weight = self._cfg.priority_IS_weight
        self._optimizer = Adam(self._model.parameters(), lr=self._cfg.learn.learning_rate)
        self._gamma = self._cfg.discount_factor
        self._nstep = self._cfg.nstep
        self._burnin_step = self._cfg.burnin_step
        self._value_rescale = self._cfg.learn.value_rescale

        self._target_model = copy.deepcopy(self._model)
        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='target',
            update_type='momentum',
            update_kwargs={'theta': self._cfg.learn.target_update_theta}
        )

        self._target_model = model_wrap(
            self._target_model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
        )
        self._learn_model = model_wrap(
            self._model,
            wrapper_name='hidden_state',
            state_num=self._cfg.learn.batch_size,
        )
        self._learn_model = model_wrap(self._learn_model, wrapper_name='argmax_sample')
        self._learn_model.reset()
        self._target_model.reset()

    def _data_preprocess_learn(self, data: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Preprocess the data to fit the required data format for learning
        Arguments:
            - data (:obj:`List[Dict[str, Any]]`): The data collected from collect function
        Returns:
            - data (:obj:`Dict[str, torch.Tensor]`): The processed data, including at least \
                ['main_obs', 'target_obs', 'burnin_obs', 'action', 'reward', 'done', 'weight']
        """
        # data preprocess
        data = timestep_collate(data)
        if self._cuda:
            data = to_device(data, self._device)

        if self._priority_IS_weight:
            assert self._priority, "Use IS Weight correction, but Priority is not used."
        if self._priority and self._priority_IS_weight:
            data['weight'] = data['IS']
        else:
            data['weight'] = data.get('weight', None)

        burnin_step = self._burnin_step

        # data['done'], data['weight'], data['value_gamma'] is used in def _forward_learn() to calculate
        # the q_nstep_td_error, should be length of [self._sequence_len-self._burnin_step]
        ignore_done = self._cfg.learn.ignore_done
        if ignore_done:
            data['done'] = [None for _ in range(self._sequence_len - burnin_step)]
        else:
            data['done'] = data['done'][burnin_step:].float()  # for computation of online model self._learn_model
            # NOTE that after the proprocessing of  get_nstep_return_data() in _get_train_sample
            # the data['done'] [t] is already the n-step done

        # if the data don't include 'weight' or 'value_gamma' then fill in None in a list
        # with length of [self._sequence_len-self._burnin_step],
        # below is two different implementation ways
        if 'value_gamma' not in data:
            data['value_gamma'] = [None for _ in range(self._sequence_len - burnin_step)]
        else:
            data['value_gamma'] = data['value_gamma'][burnin_step:]

        if 'weight' not in data or data['weight'] is None:
            data['weight'] = [None for _ in range(self._sequence_len - burnin_step)]
        else:
            data['weight'] = data['weight'] * torch.ones_like(data['done'])
            # every timestep in sequence has same weight, which is the _priority_IS_weight in PER

        # cut the seq_len from burn_in step to (seq_len - nstep) step
        data['action'] = data['action'][burnin_step:-self._nstep]
        # cut the seq_len from burn_in step to (seq_len - nstep) step
        data['reward'] = data['reward'][burnin_step:-self._nstep]

        # the burnin_nstep_obs is used to calculate the init hidden state of rnn for the calculation of the q_value,
        # target_q_value, and target_q_action

        # these slicing are all done in the outermost layer, which is the seq_len dim
        data['burnin_nstep_obs'] = data['obs'][:burnin_step + self._nstep]
        # the main_obs is used to calculate the q_value, the [bs:-self._nstep] means using the data from
        # [bs] timestep to [self._sequence_len-self._nstep] timestep
        data['main_obs'] = data['obs'][burnin_step:-self._nstep]
        # the target_obs is used to calculate the target_q_value
        data['target_obs'] = data['obs'][burnin_step + self._nstep:]

        return data

    def _forward_learn(self, data: List[List[Dict[str, Any]]]) -> Dict[str, Any]:
        """
        Overview:
            Policy forward function of learn mode (training policy and updating parameters). Forward means \
            that the policy inputs some training batch data (trajectory for R2D2) from the replay buffer and then \
            returns the output result, including various training information such as loss, q value, priority.
        Arguments:
            - data (:obj:`List[List[Dict[int, Any]]]`): The input data used for policy forward, including a batch of \
                training samples. For each dict element, the key of the dict is the name of data items and the \
                value is the corresponding data. Usually, the value is torch.Tensor or np.ndarray or there dict/list \
                combinations. In the ``_forward_learn`` method, data often need to first be stacked in the time and \
                batch dimension by the utility functions ``self._data_preprocess_learn``. \
                For R2D2, each element in list is a trajectory with the length of ``unroll_len``, and the element in \
                trajectory list is a dict containing at least the following keys: ``obs``, ``action``, ``prev_state``, \
                ``reward``, ``next_obs``, ``done``. Sometimes, it also contains other keys such as ``weight`` \
                and ``value_gamma``.
        Returns:
            - info_dict (:obj:`Dict[str, Any]`): The information dict that indicated training result, which will be \
                recorded in text log and tensorboard, values must be python scalar or a list of scalars. For the \
                detailed definition of the dict, refer to the code of ``_monitor_vars_learn`` method.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for R2D2Policy: ``ding.policy.tests.test_r2d2``.
        """
        # forward
        data = self._data_preprocess_learn(data)  # output datatype: Dict
        self._learn_model.train()
        self._target_model.train()
        # use the hidden state in timestep=0
        # note the reset method is performed at the hidden state wrapper, to reset self._state.
        self._learn_model.reset(data_id=None, state=data['prev_state'][0])
        self._target_model.reset(data_id=None, state=data['prev_state'][0])

        if len(data['burnin_nstep_obs']) != 0:
            with torch.no_grad():
                inputs = {'obs': data['burnin_nstep_obs'], 'enable_fast_timestep': True}
                burnin_output = self._learn_model.forward(
                    inputs, saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]
                )  # keys include 'logit', 'hidden_state' 'saved_state', \
                # 'action', for their specific dim, please refer to DRQN model
                burnin_output_target = self._target_model.forward(
                    inputs, saved_state_timesteps=[self._burnin_step, self._burnin_step + self._nstep]
                )

        self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][0])
        inputs = {'obs': data['main_obs'], 'enable_fast_timestep': True}
        q_value = self._learn_model.forward(inputs)['logit']
        self._learn_model.reset(data_id=None, state=burnin_output['saved_state'][1])
        self._target_model.reset(data_id=None, state=burnin_output_target['saved_state'][1])

        next_inputs = {'obs': data['target_obs'], 'enable_fast_timestep': True}
        with torch.no_grad():
            target_q_value = self._target_model.forward(next_inputs)['logit']
            # argmax_action double_dqn
            target_q_action = self._learn_model.forward(next_inputs)['action']

        action, reward, done, weight = data['action'], data['reward'], data['done'], data['weight']
        value_gamma = data['value_gamma']
        # T, B, nstep -> T, nstep, B
        reward = reward.permute(0, 2, 1).contiguous()
        loss = []
        td_error = []
        for t in range(self._sequence_len - self._burnin_step - self._nstep):
            # here t=0 means timestep <self._burnin_step> in the original sample sequence, we minus self._nstep
            # because for the last <self._nstep> timestep in the sequence, we don't have their target obs
            td_data = q_nstep_td_data(
                q_value[t], target_q_value[t], action[t], target_q_action[t], reward[t], done[t], weight[t]
            )
            if self._value_rescale:
                l, e = q_nstep_td_error_with_rescale(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t])
                loss.append(l)
                td_error.append(e.abs())
            else:
                l, e = q_nstep_td_error(td_data, self._gamma, self._nstep, value_gamma=value_gamma[t])
                loss.append(l)
                # td will be a list of the length
                # <self._sequence_len - self._burnin_step - self._nstep>
                # and each value is a tensor of the size batch_size
                td_error.append(e.abs())
        loss = sum(loss) / (len(loss) + 1e-8)

        # using the mixture of max and mean absolute n-step TD-errors as the priority of the sequence
        td_error_per_sample = 0.9 * torch.max(
            torch.stack(td_error), dim=0
        )[0] + (1 - 0.9) * (torch.sum(torch.stack(td_error), dim=0) / (len(td_error) + 1e-8))
        # torch.max(torch.stack(td_error), dim=0) will return tuple like thing, please refer to torch.max
        # td_error shape list(<self._sequence_len-self._burnin_step-self._nstep>, B),
        # for example, (75,64)
        # torch.sum(torch.stack(td_error), dim=0) can also be replaced with sum(td_error)

        # update
        self._optimizer.zero_grad()
        loss.backward()
        self._optimizer.step()
        # after update
        self._target_model.update(self._learn_model.state_dict())

        # the information for debug
        batch_range = torch.arange(action[0].shape[0])
        q_s_a_t0 = q_value[0][batch_range, action[0]]
        target_q_s_a_t0 = target_q_value[0][batch_range, target_q_action[0]]

        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': loss.item(),
            'priority': td_error_per_sample.tolist(),  # note abs operation has been performed above
            # the first timestep in the sequence, may not be the start of episode
            'q_s_taken-a_t0': q_s_a_t0.mean().item(),
            'target_q_s_max-a_t0': target_q_s_a_t0.mean().item(),
            'q_s_a-mean_t0': q_value[0].mean().item(),
        }

    def _reset_learn(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for learn mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different trajectories in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                (i.e. RNN hidden_state in R2D2) specified by ``data_id``.
        """

        self._learn_model.reset(data_id=data_id)

    def _state_dict_learn(self) -> Dict[str, Any]:
        """
        Overview:
            Return the state_dict of learn mode, usually including model, target_model and optimizer.
        Returns:
            - state_dict (:obj:`Dict[str, Any]`): The dict of current policy learn state, for saving and restoring.
        """
        return {
            'model': self._learn_model.state_dict(),
            'target_model': self._target_model.state_dict(),
            'optimizer': self._optimizer.state_dict(),
        }

    def _load_state_dict_learn(self, state_dict: Dict[str, Any]) -> None:
        """
        Overview:
            Load the state_dict variable into policy learn mode.
        Arguments:
            - state_dict (:obj:`Dict[str, Any]`): The dict of policy learn state saved before.

        .. tip::
            If you want to only load some parts of model, you can simply set the ``strict`` argument in \
            load_state_dict to ``False``, or refer to ``ding.torch_utils.checkpoint_helper`` for more \
            complicated operation.
        """
        self._learn_model.load_state_dict(state_dict['model'])
        self._target_model.load_state_dict(state_dict['target_model'])
        self._optimizer.load_state_dict(state_dict['optimizer'])

    def _init_collect(self) -> None:
        """
        Overview:
            Initialize the collect mode of policy, including related attributes and modules. For R2D2, it contains the \
            collect_model to balance the exploration and exploitation with epsilon-greedy sample mechanism and \
            maintain the hidden state of rnn. Besides, there are some initialization operations about other \
            algorithm-specific arguments such as burnin_step, unroll_len and nstep.
            This method will be called in ``__init__`` method if ``collect`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_collect`` method, you'd better name them \
            with prefix ``_collect_`` to avoid conflict with other modes, such as ``self._collect_attr1``.

        .. tip::
            Some variables need to initialize independently in different modes, such as gamma and nstep in R2D2. This \
            design is for the convenience of parallel execution of different policy modes.
        """
        self._nstep = self._cfg.nstep
        self._burnin_step = self._cfg.burnin_step
        self._gamma = self._cfg.discount_factor
        self._sequence_len = self._cfg.learn_unroll_len + self._cfg.burnin_step
        self._unroll_len = self._sequence_len

        # for r2d2, this hidden_state wrapper is to add the 'prev hidden state' for each transition.
        # Note that collect env forms a batch and the key is added for the batch simultaneously.
        self._collect_model = model_wrap(
            self._model, wrapper_name='hidden_state', state_num=self._cfg.collect.env_num, save_prev_state=True
        )
        self._collect_model = model_wrap(self._collect_model, wrapper_name='eps_greedy_sample')
        self._collect_model.reset()

    def _forward_collect(self, data: Dict[int, Any], eps: float) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of collect mode (collecting training data by interacting with envs). Forward means \
            that the policy gets some necessary data (mainly observation) from the envs and then returns the output \
            data, such as the action to interact with the envs. Besides, this policy also needs ``eps`` argument for \
            exploration, i.e., classic epsilon-greedy exploration strategy.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
            - eps (:obj:`float`): The epsilon value for exploration.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action and \
                other necessary data (prev_state) for learn mode defined in ``self._process_transition`` method. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            RNN's hidden states are maintained in the policy, so we don't need pass them into data but to reset the \
            hidden states with ``_reset_collect`` method when episode ends. Besides, the previous hidden states are \
            necessary for training, so we need to return them in ``_process_transition`` method.
        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for R2D2Policy: ``ding.policy.tests.test_r2d2``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._collect_model.eval()
        with torch.no_grad():
            # in collect phase, inference=True means that each time we only pass one timestep data,
            # so the we can get the hidden state of rnn: <prev_state> at each timestep.
            output = self._collect_model.forward(data, data_id=data_id, eps=eps, inference=True)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_collect(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for eval mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in evaluation in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                (i.e., RNN hidden_state in R2D2) specified by ``data_id``.
        """
        self._collect_model.reset(data_id=data_id)

    def _process_transition(self, obs: torch.Tensor, policy_output: Dict[str, torch.Tensor],
                            timestep: namedtuple) -> Dict[str, torch.Tensor]:
        """
        Overview:
            Process and pack one timestep transition data into a dict, which can be directly used for training and \
            saved in replay buffer. For R2D2, it contains obs, action, prev_state, reward, and done.
        Arguments:
            - obs (:obj:`torch.Tensor`): The env observation of current timestep, such as stacked 2D image in Atari.
            - policy_output (:obj:`Dict[str, torch.Tensor]`): The output of the policy network given the observation \
                as input. For R2D2, it contains the action and the prev_state of RNN.
            - timestep (:obj:`namedtuple`): The execution result namedtuple returned by the environment step method, \
                except all the elements have been transformed into tensor data. Usually, it contains the next obs, \
                reward, done, info, etc.
        Returns:
            - transition (:obj:`Dict[str, torch.Tensor]`): The processed transition data of the current timestep.
        """
        transition = {
            'obs': obs,
            'action': policy_output['action'],
            'prev_state': policy_output['prev_state'],
            'reward': timestep.reward,
            'done': timestep.done,
        }
        return transition

    def _get_train_sample(self, transitions: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """
        Overview:
            For a given trajectory (transitions, a list of transition) data, process it into a list of sample that \
            can be used for training directly. In R2D2, a train sample is processed transitions with unroll_len \
            length. This method is usually used in collectors to execute necessary \
            RL data preprocessing before training, which can help learner amortize revelant time consumption. \
            In addition, you can also implement this method as an identity function and do the data processing \
            in ``self._forward_learn`` method.
        Arguments:
            - transitions (:obj:`List[Dict[str, Any]`): The trajectory data (a list of transition), each element is \
                the same format as the return value of ``self._process_transition`` method.
        Returns:
            - samples (:obj:`List[Dict[str, Any]]`): The processed train samples, each sample is a fixed-length \
                trajectory, and each element in a sample is the similar format as input transitions, but may contain \
                more data for training, such as nstep reward and value_gamma factor.
        """
        transitions = get_nstep_return_data(transitions, self._nstep, gamma=self._gamma)
        return get_train_sample(transitions, self._unroll_len)

    def _init_eval(self) -> None:
        """
        Overview:
            Initialize the eval mode of policy, including related attributes and modules. For R2D2, it contains the \
            eval model to greedily select action with argmax q_value mechanism and main the hidden state.
            This method will be called in ``__init__`` method if ``eval`` field is in ``enable_field``.

        .. note::
            If you want to set some spacial member variables in ``_init_eval`` method, you'd better name them \
            with prefix ``_eval_`` to avoid conflict with other modes, such as ``self._eval_attr1``.
        """
        self._eval_model = model_wrap(self._model, wrapper_name='hidden_state', state_num=self._cfg.eval.env_num)
        self._eval_model = model_wrap(self._eval_model, wrapper_name='argmax_sample')
        self._eval_model.reset()

    def _forward_eval(self, data: Dict[int, Any]) -> Dict[int, Any]:
        """
        Overview:
            Policy forward function of eval mode (evaluation policy performance by interacting with envs). Forward \
            means that the policy gets some necessary data (mainly observation) from the envs and then returns the \
            action to interact with the envs. ``_forward_eval`` often use argmax sample method to get actions that \
            q_value is the highest.
        Arguments:
            - data (:obj:`Dict[int, Any]`): The input data used for policy forward, including at least the obs. The \
                key of the dict is environment id and the value is the corresponding data of the env.
        Returns:
            - output (:obj:`Dict[int, Any]`): The output data of policy forward, including at least the action. The \
                key of the dict is the same as the input data, i.e. environment id.

        .. note::
            RNN's hidden states are maintained in the policy, so we don't need pass them into data but to reset the \
            hidden states with ``_reset_eval`` method when the episode ends.

        .. note::
            The input value can be torch.Tensor or dict/list combinations and current policy supports all of them. \
            For the data type that not supported, the main reason is that the corresponding model does not support it. \
            You can implement you own model rather than use the default model. For more information, please raise an \
            issue in GitHub repo and we will continue to follow up.

        .. note::
            For more detailed examples, please refer to our unittest for R2D2Policy: ``ding.policy.tests.test_r2d2``.
        """
        data_id = list(data.keys())
        data = default_collate(list(data.values()))
        if self._cuda:
            data = to_device(data, self._device)
        data = {'obs': data}
        self._eval_model.eval()
        with torch.no_grad():
            output = self._eval_model.forward(data, data_id=data_id, inference=True)
        if self._cuda:
            output = to_device(output, 'cpu')
        output = default_decollate(output)
        return {i: d for i, d in zip(data_id, output)}

    def _reset_eval(self, data_id: Optional[List[int]] = None) -> None:
        """
        Overview:
            Reset some stateful variables for eval mode when necessary, such as the hidden state of RNN or the \
            memory bank of some special algortihms. If ``data_id`` is None, it means to reset all the stateful \
            varaibles. Otherwise, it will reset the stateful variables according to the ``data_id``. For example, \
            different environments/episodes in evaluation in ``data_id`` will have different hidden state in RNN.
        Arguments:
            - data_id (:obj:`Optional[List[int]]`): The id of the data, which is used to reset the stateful variables \
                (i.e., RNN hidden_state in R2D2) specified by ``data_id``.
        """
        self._eval_model.reset(data_id=data_id)

    def _monitor_vars_learn(self) -> List[str]:
        """
        Overview:
            Return the necessary keys for logging the return dict of ``self._forward_learn``. The logger module, such \
            as text logger, tensorboard logger, will use these keys to save the corresponding data.
        Returns:
            - necessary_keys (:obj:`List[str]`): The list of the necessary keys to be logged.
        """
        return super()._monitor_vars_learn() + [
            'total_loss', 'priority', 'q_s_taken-a_t0', 'target_q_s_max-a_t0', 'q_s_a-mean_t0'
        ]