File size: 8,472 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
from typing import List, Dict, Any, Tuple, Union
import torch

from ding.policy import PPOPolicy, PPOOffPolicy
from ding.rl_utils import ppo_data, ppo_error, gae, gae_data
from ding.utils import POLICY_REGISTRY, split_data_generator
from ding.torch_utils import to_device
from ding.policy.common_utils import default_preprocess_learn


@POLICY_REGISTRY.register('md_ppo')
class MultiDiscretePPOPolicy(PPOPolicy):
    r"""
    Overview:
        Policy class of Multi-discrete action space PPO algorithm.
    """

    def _forward_learn(self, data: Dict[str, Any]) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data
        Returns:
            - info_dict (:obj:`Dict[str, Any]`):
              Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
                        adv_max, adv_mean, value_max, value_mean, approx_kl, clipfrac
        """
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=False)
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # PPO forward
        # ====================
        return_infos = []
        self._learn_model.train()

        for epoch in range(self._cfg.learn.epoch_per_collect):
            if self._recompute_adv:
                with torch.no_grad():
                    value = self._learn_model.forward(data['obs'], mode='compute_critic')['value']
                    next_value = self._learn_model.forward(data['next_obs'], mode='compute_critic')['value']
                    if self._value_norm:
                        value *= self._running_mean_std.std
                        next_value *= self._running_mean_std.std

                    compute_adv_data = gae_data(value, next_value, data['reward'], data['done'], data['traj_flag'])
                    # GAE need (T, B) shape input and return (T, B) output
                    data['adv'] = gae(compute_adv_data, self._gamma, self._gae_lambda)
                    # value = value[:-1]
                    unnormalized_returns = value + data['adv']

                    if self._value_norm:
                        data['value'] = value / self._running_mean_std.std
                        data['return'] = unnormalized_returns / self._running_mean_std.std
                        self._running_mean_std.update(unnormalized_returns.cpu().numpy())
                    else:
                        data['value'] = value
                        data['return'] = unnormalized_returns

            else:  # don't recompute adv
                if self._value_norm:
                    unnormalized_return = data['adv'] + data['value'] * self._running_mean_std.std
                    data['return'] = unnormalized_return / self._running_mean_std.std
                    self._running_mean_std.update(unnormalized_return.cpu().numpy())
                else:
                    data['return'] = data['adv'] + data['value']

            for batch in split_data_generator(data, self._cfg.learn.batch_size, shuffle=True):
                output = self._learn_model.forward(batch['obs'], mode='compute_actor_critic')
                adv = batch['adv']
                if self._adv_norm:
                    # Normalize advantage in a train_batch
                    adv = (adv - adv.mean()) / (adv.std() + 1e-8)

                # Calculate ppo error
                loss_list = []
                info_list = []
                action_num = len(batch['action'])
                for i in range(action_num):
                    ppo_batch = ppo_data(
                        output['logit'][i], batch['logit'][i], batch['action'][i], output['value'], batch['value'], adv,
                        batch['return'], batch['weight']
                    )
                    ppo_loss, ppo_info = ppo_error(ppo_batch, self._clip_ratio)
                    loss_list.append(ppo_loss)
                    info_list.append(ppo_info)
                avg_policy_loss = sum([item.policy_loss for item in loss_list]) / action_num
                avg_value_loss = sum([item.value_loss for item in loss_list]) / action_num
                avg_entropy_loss = sum([item.entropy_loss for item in loss_list]) / action_num
                avg_approx_kl = sum([item.approx_kl for item in info_list]) / action_num
                avg_clipfrac = sum([item.clipfrac for item in info_list]) / action_num

                wv, we = self._value_weight, self._entropy_weight
                total_loss = avg_policy_loss + wv * avg_value_loss - we * avg_entropy_loss

                self._optimizer.zero_grad()
                total_loss.backward()
                self._optimizer.step()

                return_info = {
                    'cur_lr': self._optimizer.defaults['lr'],
                    'total_loss': total_loss.item(),
                    'policy_loss': avg_policy_loss.item(),
                    'value_loss': avg_value_loss.item(),
                    'entropy_loss': avg_entropy_loss.item(),
                    'adv_max': adv.max().item(),
                    'adv_mean': adv.mean().item(),
                    'value_mean': output['value'].mean().item(),
                    'value_max': output['value'].max().item(),
                    'approx_kl': avg_approx_kl,
                    'clipfrac': avg_clipfrac,
                }
                return_infos.append(return_info)
        return return_infos


@POLICY_REGISTRY.register('md_ppo_offpolicy')
class MultiDiscretePPOOffPolicy(PPOOffPolicy):
    r"""
    Overview:
        Policy class of Multi-discrete action space off-policy PPO algorithm.
    """

    def _forward_learn(self, data: dict) -> Dict[str, Any]:
        r"""
        Overview:
            Forward and backward function of learn mode.
        Arguments:
            - data (:obj:`dict`): Dict type data
        Returns:
            - info_dict (:obj:`Dict[str, Any]`):
              Including current lr, total_loss, policy_loss, value_loss, entropy_loss, \
                        adv_abs_max, approx_kl, clipfrac
        """
        assert not self._nstep_return
        data = default_preprocess_learn(data, ignore_done=self._cfg.learn.ignore_done, use_nstep=self._nstep_return)
        if self._cuda:
            data = to_device(data, self._device)
        # ====================
        # PPO forward
        # ====================

        self._learn_model.train()
        # normal ppo
        output = self._learn_model.forward(data['obs'], mode='compute_actor_critic')
        adv = data['adv']
        return_ = data['value'] + adv
        if self._adv_norm:
            # Normalize advantage in a total train_batch
            adv = (adv - adv.mean()) / (adv.std() + 1e-8)
        # Calculate ppo error
        loss_list = []
        info_list = []
        action_num = len(data['action'])
        for i in range(action_num):
            ppodata = ppo_data(
                output['logit'][i], data['logit'][i], data['action'][i], output['value'], data['value'], adv, return_,
                data['weight']
            )
            ppo_loss, ppo_info = ppo_error(ppodata, self._clip_ratio)
            loss_list.append(ppo_loss)
            info_list.append(ppo_info)
        avg_policy_loss = sum([item.policy_loss for item in loss_list]) / action_num
        avg_value_loss = sum([item.value_loss for item in loss_list]) / action_num
        avg_entropy_loss = sum([item.entropy_loss for item in loss_list]) / action_num
        avg_approx_kl = sum([item.approx_kl for item in info_list]) / action_num
        avg_clipfrac = sum([item.clipfrac for item in info_list]) / action_num

        wv, we = self._value_weight, self._entropy_weight
        total_loss = avg_policy_loss + wv * avg_value_loss - we * avg_entropy_loss

        # ====================
        # PPO update
        # ====================
        self._optimizer.zero_grad()
        total_loss.backward()
        self._optimizer.step()
        return {
            'cur_lr': self._optimizer.defaults['lr'],
            'total_loss': total_loss.item(),
            'policy_loss': avg_policy_loss,
            'value_loss': avg_value_loss,
            'entropy_loss': avg_entropy_loss,
            'adv_abs_max': adv.abs().max().item(),
            'approx_kl': avg_approx_kl,
            'clipfrac': avg_clipfrac,
        }