File size: 4,021 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import gym
import copy
import numpy as np
from typing import List
from easydict import EasyDict
from ding.utils import ENV_REGISTRY
from ding.torch_utils import to_ndarray
from ding.envs import BaseEnv, BaseEnvTimestep
from .sokoban_wrappers import wrap_sokoban


@ENV_REGISTRY.register('sokoban')
class SokobanEnv(BaseEnv):

    def __init__(self, cfg: dict) -> None:
        self._cfg = cfg
        self._env_id = cfg.env_id
        self._init_flag = False
        self._save_replay = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = self._make_env(only_info=False)
            self._init_flag = True

            if self._save_replay:
                self._env = gym.wrappers.RecordVideo(
                    self._env,
                    video_folder=self._replay_path,
                    episode_trigger=lambda episode_id: True,
                    name_prefix='rl-video-{}'.format(id(self))
                )

            self._env.observation_space.dtype = np.float32  # To unify the format of envs in DI-engine
            self._observation_space = self._env.observation_space
            self._action_space = self._env.action_space
            self._reward_space = gym.spaces.Box(
                low=self._env.reward_range[0], high=self._env.reward_range[1], shape=(1, ), dtype=np.float32
            )

            if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
                np_seed = 100 * np.random.randint(1, 1000)
                self._env.seed(self._seed + np_seed)
            elif hasattr(self, '_seed'):
                self._env.seed(self._seed)
            obs = self._env.reset()
            obs = to_ndarray(obs).astype('float32')
            self._eval_episode_return = 0.
            return obs

    def step(self, action: np.array):
        action = to_ndarray(action)
        obs, rew, done, info = self._env.step(int(action))
        self._eval_episode_return += rew
        obs = to_ndarray(obs).astype('float32')
        rew = to_ndarray([rew])  # wrapped to be transfered to a array with shape (1,)
        if done:
            info['eval_episode_return'] = self._eval_episode_return
        return BaseEnvTimestep(obs, rew, done, info)

    def _make_env(self, only_info=False):
        return wrap_sokoban(
            self._env_id,
            norm_obs=self._cfg.get('norm_obs', EasyDict(use_norm=False, )),
            norm_reward=self._cfg.get('norm_reward', EasyDict(use_norm=False, )),
            only_info=only_info
        )

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def enable_save_replay(self, replay_path) -> None:
        if replay_path is None:
            replay_path = './video'
        self._save_replay = True
        self._replay_path = replay_path

    def __repr__(self) -> str:
        return "DI-engine Sokoban Env({})".format(self._cfg.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_cfg = copy.deepcopy(cfg)
        collector_env_num = collector_cfg.pop('collector_env_num', 1)
        return [collector_cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_cfg = copy.deepcopy(cfg)
        evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1)
        evaluator_cfg.norm_reward = EasyDict(use_norm=False, )
        return [evaluator_cfg for _ in range(evaluator_env_num)]

    @property
    def observation_space(self) -> gym.spaces.Space:
        return self._observation_space

    @property
    def action_space(self) -> gym.spaces.Space:
        return self._action_space

    @property
    def reward_space(self) -> gym.spaces.Space:
        return self._reward_space