File size: 3,910 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
from copy import deepcopy
from ditk import logging
from ding.model import DQN
from ding.policy import DQNPolicy
from ding.envs import DingEnvWrapper, SubprocessEnvManagerV2
from ding.data import DequeBuffer
from ding.config import compile_config
from ding.framework import task, ding_init
from ding.framework.context import OnlineRLContext
from ding.framework.middleware import OffPolicyLearner, StepCollector, interaction_evaluator, data_pusher, \
eps_greedy_handler, CkptSaver, context_exchanger, model_exchanger, termination_checker, nstep_reward_enhancer, \
online_logger
from ding.utils import set_pkg_seed
from dizoo.atari.envs.atari_env import AtariEnv
from dizoo.atari.config.serial.pong.pong_dqn_config import main_config, create_config
def main():
logging.getLogger().setLevel(logging.INFO)
main_config.exp_name = 'pong_dqn_seed0_ditask_dist'
cfg = compile_config(main_config, create_cfg=create_config, auto=True)
ding_init(cfg)
with task.start(async_mode=False, ctx=OnlineRLContext()):
assert task.router.is_active, "Please execute this script with ditask! See note in the header."
set_pkg_seed(cfg.seed, use_cuda=cfg.policy.cuda)
model = DQN(**cfg.policy.model)
policy = DQNPolicy(cfg.policy, model=model)
if 'learner' in task.router.labels:
logging.info("Learner running on node {}".format(task.router.node_id))
buffer_ = DequeBuffer(size=cfg.policy.other.replay_buffer.replay_buffer_size)
task.use(
context_exchanger(
send_keys=["train_iter"],
recv_keys=["trajectories", "episodes", "env_step", "env_episode"],
skip_n_iter=0
)
)
task.use(model_exchanger(model, is_learner=True))
task.use(nstep_reward_enhancer(cfg))
task.use(data_pusher(cfg, buffer_))
task.use(OffPolicyLearner(cfg, policy.learn_mode, buffer_))
task.use(CkptSaver(policy, cfg.exp_name, train_freq=1000))
elif 'evaluator' in task.router.labels:
logging.info("Evaluator running on node {}".format(task.router.node_id))
evaluator_cfg = deepcopy(cfg.env)
evaluator_cfg.is_train = False
evaluator_env = SubprocessEnvManagerV2(
env_fn=[lambda: AtariEnv(evaluator_cfg) for _ in range(cfg.env.evaluator_env_num)], cfg=cfg.env.manager
)
task.use(context_exchanger(recv_keys=["train_iter", "env_step"], skip_n_iter=1))
task.use(model_exchanger(model, is_learner=False))
task.use(interaction_evaluator(cfg, policy.eval_mode, evaluator_env))
task.use(CkptSaver(policy, cfg.exp_name, save_finish=False))
task.use(online_logger(record_train_iter=True))
elif 'collector' in task.router.labels:
logging.info("Collector running on node {}".format(task.router.node_id))
collector_cfg = deepcopy(cfg.env)
collector_cfg.is_train = True
collector_env = SubprocessEnvManagerV2(
env_fn=[lambda: AtariEnv(collector_cfg) for _ in range(cfg.env.collector_env_num)], cfg=cfg.env.manager
)
task.use(
context_exchanger(
send_keys=["trajectories", "episodes", "env_step", "env_episode"],
recv_keys=["train_iter"],
skip_n_iter=1
)
)
task.use(model_exchanger(model, is_learner=False))
task.use(eps_greedy_handler(cfg))
task.use(StepCollector(cfg, policy.collect_mode, collector_env))
task.use(termination_checker(max_env_step=int(1e7)))
else:
raise KeyError("invalid router labels: {}".format(task.router.labels))
task.run()
if __name__ == "__main__":
main()
|