File size: 4,111 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import os
from functools import partial

import gym
import numpy as np
from easydict import EasyDict
from tensorboardX import SummaryWriter

from ding.torch_utils import to_ndarray
from ding.worker import BaseLearner, SampleSerialCollector, InteractionSerialEvaluator
from ding.model import VAC
from ding.policy import PPOPolicy
from ding.envs import DingEnvWrapper, EvalEpisodeReturnWrapper, BaseEnvManager
from ding.config import compile_config
from ding.utils import set_pkg_seed
from dizoo.procgen.config.coinrun_ppo_config import coinrun_ppo_config


class CoinrunWrapper(gym.Wrapper):

    def __init__(self, env, cfg):
        super().__init__(env)
        cfg = EasyDict(cfg)
        self._cfg = cfg
        self._observation_space = gym.spaces.Box(
            low=np.zeros(shape=(3, 64, 64)), high=np.ones(shape=(3, 64, 64)) * 255, shape=(3, 64, 64), dtype=np.float32
        )
        self._action_space = gym.spaces.Discrete(15)
        self._reward_space = gym.spaces.Box(low=float("-inf"), high=float("inf"), shape=(1, ), dtype=np.float32)

    def _process_obs(self, obs):
        obs = to_ndarray(obs)
        obs = np.transpose(obs, (2, 0, 1))
        obs = obs.astype(np.float32)
        return obs

    def step(self, action):
        obs, reward, done, info = self.env.step(action)
        return self._process_obs(obs), reward, bool(done), info

    def reset(self):
        obs = self.env.reset()
        return self._process_obs(obs)


def wrapped_procgen_env(cfg):
    default_cfg = dict(
        control_level=True,
        start_level=0,
        num_levels=0,
        env_id='coinrun',
    )
    default_cfg.update(cfg)
    default_cfg = EasyDict(default_cfg)

    return DingEnvWrapper(
        gym.make(
            'procgen:procgen-' + default_cfg.env_id + '-v0',
            start_level=default_cfg.start_level,
            num_levels=default_cfg.num_levels
        ) if default_cfg.control_level else
        gym.make('procgen:procgen-' + default_cfg.env_id + '-v0', start_level=0, num_levels=1),
        cfg={
            'env_wrapper': [
                lambda env: CoinrunWrapper(env, default_cfg),
                lambda env: EvalEpisodeReturnWrapper(env),
            ]
        }
    )


def main(cfg, seed=0, max_env_step=int(1e10), max_train_iter=int(1e10)):
    cfg = compile_config(
        cfg, BaseEnvManager, PPOPolicy, BaseLearner, SampleSerialCollector, InteractionSerialEvaluator, save_cfg=True
    )
    collector_env_num, evaluator_env_num = cfg.env.collector_env_num, cfg.env.evaluator_env_num
    collector_env = BaseEnvManager(
        env_fn=[partial(wrapped_procgen_env, cfg=coinrun_ppo_config.env) for _ in range(collector_env_num)],
        cfg=cfg.env.manager
    )
    evaluator_env = BaseEnvManager(
        env_fn=[partial(wrapped_procgen_env, cfg=coinrun_ppo_config.env) for _ in range(evaluator_env_num)],
        cfg=cfg.env.manager
    )

    collector_env.seed(seed)
    evaluator_env.seed(seed, dynamic_seed=False)
    set_pkg_seed(seed, use_cuda=cfg.policy.cuda)

    model = VAC(**cfg.policy.model)
    policy = PPOPolicy(cfg.policy, model=model)
    tb_logger = SummaryWriter(os.path.join('./{}/log/'.format(cfg.exp_name), 'serial'))
    learner = BaseLearner(cfg.policy.learn.learner, policy.learn_mode, tb_logger, exp_name=cfg.exp_name)
    collector = SampleSerialCollector(
        cfg.policy.collect.collector, collector_env, policy.collect_mode, tb_logger, exp_name=cfg.exp_name
    )
    evaluator = InteractionSerialEvaluator(
        cfg.policy.eval.evaluator, evaluator_env, policy.eval_mode, tb_logger, exp_name=cfg.exp_name
    )

    while True:
        if evaluator.should_eval(learner.train_iter):
            stop, reward = evaluator.eval(learner.save_checkpoint, learner.train_iter, collector.envstep)
            if stop:
                break
        new_data = collector.collect(train_iter=learner.train_iter)
        learner.train(new_data, collector.envstep)
        if collector.envstep >= max_env_step or learner.train_iter >= max_train_iter:
            break


if __name__ == '__main__':
    main(coinrun_ppo_config)