File size: 11,254 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
from typing import Any, Union, List
import copy
import numpy as np
from ditk import logging

from ding.envs import BaseEnv, BaseEnvTimestep, BaseEnvInfo, update_shape
from ding.envs.common.env_element import EnvElement, EnvElementInfo
from ding.envs.common.common_function import affine_transform
from ding.torch_utils import to_ndarray, to_list
from ding.utils import ENV_REGISTRY
from .pybullet_wrappers import wrap_pybullet

Pybullet_INFO_DICT = {
    # pybullet env
    'InvertedPendulumMuJoCoEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(4, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(1, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'InvertedDoublePendulumMuJoCoEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(11, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(1, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'Walker2DMuJoCoEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(17, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(6, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'Walker2DPyBulletEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(22, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(6, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'HalfCheetahMuJoCoEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(17, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(6, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'HalfCheetahPyBulletEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(26, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(6, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'AntMuJoCoEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(111, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(8, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'AntPyBulletEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(28, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(8, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'HopperMuJoCoEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(11, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(3, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
    'HopperPyBulletEnv-v0': BaseEnvInfo(
        agent_num=1,
        obs_space=EnvElementInfo(
            shape=(15, ),
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf"),
                'dtype': np.float32
            },
        ),
        act_space=EnvElementInfo(
            shape=(3, ),
            value={
                'min': -1.0,
                'max': 1.0,
                'dtype': np.float32
            },
        ),
        rew_space=EnvElementInfo(
            shape=1,
            value={
                'min': np.float64("-inf"),
                'max': np.float64("inf")
            },
        ),
        use_wrappers=None,
    ),
}


@ENV_REGISTRY.register('pybullet')
class PybulletEnv(BaseEnv):
    """
    Note:
        Due to the open source of mujoco env, DI-engine will deprecate PyBullet env. If anyone needs it, \
        please add a new issue and we will continue to maintain it.
    """

    def __init__(self, cfg: dict) -> None:
        logging.warning('PybulletEnv is deprecated, if anyone needs it, please add a new issue.')
        self._cfg = cfg
        self._use_act_scale = cfg.use_act_scale
        self._init_flag = False

    def reset(self) -> np.ndarray:
        if not self._init_flag:
            self._env = self._make_env(only_info=False)
            self._init_flag = True
        if hasattr(self, '_seed') and hasattr(self, '_dynamic_seed') and self._dynamic_seed:
            np_seed = 100 * np.random.randint(1, 1000)
            self._env.seed(self._seed + np_seed)
        elif hasattr(self, '_seed'):
            self._env.seed(self._seed)
        obs = self._env.reset()
        obs = to_ndarray(obs).astype('float32')
        self._eval_episode_return = 0.
        return obs

    def close(self) -> None:
        if self._init_flag:
            self._env.close()
        self._init_flag = False

    def seed(self, seed: int, dynamic_seed: bool = True) -> None:
        self._seed = seed
        self._dynamic_seed = dynamic_seed
        np.random.seed(self._seed)

    def step(self, action: Union[np.ndarray, list]) -> BaseEnvTimestep:
        action = to_ndarray(action)
        if self._use_act_scale:
            action_range = self.info().act_space.value
            action = affine_transform(action, min_val=action_range['min'], max_val=action_range['max'])
        obs, rew, done, info = self._env.step(action)
        self._eval_episode_return += rew
        obs = to_ndarray(obs).astype('float32')
        rew = to_ndarray([rew])  # wrapped to be transfered to a array with shape (1,)
        if done:
            info['eval_episode_return'] = self._eval_episode_return
        return BaseEnvTimestep(obs, rew, done, info)

    def info(self) -> BaseEnvInfo:
        if self._cfg.env_id in Pybullet_INFO_DICT:
            info = copy.deepcopy(Pybullet_INFO_DICT[self._cfg.env_id])
            info.use_wrappers = self._make_env(only_info=True)
            obs_shape, act_shape, rew_shape = update_shape(
                info.obs_space.shape, info.act_space.shape, info.rew_space.shape, info.use_wrappers.split('\n')
            )
            info.obs_space.shape = obs_shape
            info.act_space.shape = act_shape
            info.rew_space.shape = rew_shape
            return info
        else:
            keys = Pybullet_INFO_DICT.keys()
            raise NotImplementedError('{} not found in Pybullet_INFO_DICT [{}]'.format(self._cfg.env_id, keys))

    def _make_env(self, only_info=False):
        return wrap_pybullet(
            self._cfg.env_id,
            norm_obs=self._cfg.get('norm_obs', None),
            norm_reward=self._cfg.get('norm_reward', None),
            only_info=only_info
        )

    def __repr__(self) -> str:
        return "DI-engine Pybullet Env({})".format(self._cfg.env_id)

    @staticmethod
    def create_collector_env_cfg(cfg: dict) -> List[dict]:
        collector_cfg = copy.deepcopy(cfg)
        collector_env_num = collector_cfg.pop('collector_env_num', 1)
        return [collector_cfg for _ in range(collector_env_num)]

    @staticmethod
    def create_evaluator_env_cfg(cfg: dict) -> List[dict]:
        evaluator_cfg = copy.deepcopy(cfg)
        evaluator_env_num = evaluator_cfg.pop('evaluator_env_num', 1)
        evaluator_cfg.norm_reward.use_norm = False
        return [evaluator_cfg for _ in range(evaluator_env_num)]