File size: 11,742 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import os
import sys
import subprocess
import signal
import pickle
from ditk import logging
import time
from threading import Thread
from easydict import EasyDict
import numpy as np
from ding.worker import Coordinator, create_comm_collector, create_comm_learner, LearnerAggregator
from ding.config import read_config_with_system, compile_config_parallel
from ding.utils import set_pkg_seed, DEFAULT_K8S_AGGREGATOR_SLAVE_PORT, pod_exec_command
def dist_prepare_config(
filename: str,
seed: int,
platform: str,
coordinator_host: str,
learner_host: str,
collector_host: str,
coordinator_port: int,
learner_port: int,
collector_port,
) -> str:
set_pkg_seed(seed)
main_cfg, create_cfg, system_cfg = read_config_with_system(filename)
config = compile_config_parallel(
main_cfg,
create_cfg=create_cfg,
system_cfg=system_cfg,
seed=seed,
platform=platform,
coordinator_host=coordinator_host,
learner_host=learner_host,
collector_host=collector_host,
coordinator_port=coordinator_port,
learner_port=learner_port,
collector_port=collector_port,
)
# Pickle dump config to disk for later use.
real_filename = filename + '.pkl'
with open(real_filename, 'wb') as f:
pickle.dump(config, f)
return real_filename
def dist_launch_coordinator(
filename: str,
seed: int,
coordinator_port: int,
disable_flask_log: bool,
enable_total_log: bool = False
) -> None:
set_pkg_seed(seed)
# Disable some part of DI-engine log
if not enable_total_log:
coordinator_log = logging.getLogger('coordinator_logger')
coordinator_log.disabled = True
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
with open(filename, 'rb') as f:
config = pickle.load(f)
# CLI > ENV VARIABLE > CONFIG
if coordinator_port is not None:
config.system.coordinator.port = coordinator_port
elif os.environ.get('COORDINATOR_PORT', None):
port = os.environ['COORDINATOR_PORT']
if port.isdigit():
config.system.coordinator.port = int(port)
else: # use config pre-defined value
assert 'port' in config.system.coordinator and np.isscalar(config.system.coordinator.port)
coordinator = Coordinator(config)
coordinator.start()
# Monitor thread: Coordinator will remain running until its ``system_shutdown_flag`` is set to False.
def shutdown_monitor():
while True:
time.sleep(3)
if coordinator.system_shutdown_flag:
coordinator.close()
break
shutdown_monitor_thread = Thread(target=shutdown_monitor, args=(), daemon=True, name='shutdown_monitor')
shutdown_monitor_thread.start()
shutdown_monitor_thread.join()
print("[DI-engine dist pipeline]Your RL agent is converged, you can refer to 'log' and 'tensorboard' for details")
def dist_launch_learner(
filename: str, seed: int, learner_port: int, name: str = None, disable_flask_log: bool = True
) -> None:
set_pkg_seed(seed)
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
if name is None:
name = 'learner'
with open(filename, 'rb') as f:
config = pickle.load(f).system[name]
# CLI > ENV VARIABLE > CONFIG
if learner_port is not None:
config.port = learner_port
elif os.environ.get('LEARNER_PORT', None):
port = os.environ['LEARNER_PORT']
if port.isdigit():
config.port = int(port)
else: # use config pre-defined value
assert 'port' in config and np.isscalar(config.port)
learner = create_comm_learner(config)
learner.start()
def dist_launch_collector(
filename: str, seed: int, collector_port: int, name: str = None, disable_flask_log: bool = True
) -> None:
set_pkg_seed(seed)
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
if name is None:
name = 'collector'
with open(filename, 'rb') as f:
config = pickle.load(f).system[name]
# CLI > ENV VARIABLE > CONFIG
if collector_port is not None:
config.port = collector_port
elif os.environ.get('COLLECTOR_PORT', None):
port = os.environ['COLLECTOR_PORT']
if port.isdigit():
config.port = int(port)
else: # use config pre-defined value
assert 'port' in config and np.isscalar(config.port)
collector = create_comm_collector(config)
collector.start()
def dist_launch_learner_aggregator(
filename: str,
seed: int,
aggregator_host: str,
aggregator_port: int,
name: str = None,
disable_flask_log: bool = True
) -> None:
set_pkg_seed(seed)
if disable_flask_log:
log = logging.getLogger('werkzeug')
log.disabled = True
if filename is not None:
if name is None:
name = 'learner_aggregator'
with open(filename, 'rb') as f:
config = pickle.load(f).system[name]
else:
# start without config (create a fake one)
host, port = aggregator_host, DEFAULT_K8S_AGGREGATOR_SLAVE_PORT
if aggregator_port is not None:
port = aggregator_port
elif os.environ.get('AGGREGATOR_PORT', None):
_port = os.environ['AGGREGATOR_PORT']
if _port.isdigit():
port = int(_port)
config = dict(
master=dict(host=host, port=port + 1),
slave=dict(host=host, port=port + 0),
learner={},
)
config = EasyDict(config)
learner_aggregator = LearnerAggregator(config)
learner_aggregator.start()
def dist_launch_spawn_learner(
filename: str, seed: int, learner_port: int, name: str = None, disable_flask_log: bool = True
) -> None:
current_env = os.environ.copy()
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
processes = []
for local_rank in range(0, local_world_size):
dist_rank = int(os.environ.get('START_RANK', 0)) + local_rank
current_env["RANK"] = str(dist_rank)
current_env["LOCAL_RANK"] = str(local_rank)
executable = subprocess.getoutput('which ding')
assert len(executable) > 0, "cannot find executable \"ding\""
cmd = [executable, '-m', 'dist', '--module', 'learner']
if filename is not None:
cmd += ['-c', f'{filename}']
if seed is not None:
cmd += ['-s', f'{seed}']
if learner_port is not None:
cmd += ['-lp', f'{learner_port}']
if name is not None:
cmd += ['--module-name', f'{name}']
if disable_flask_log is not None:
cmd += ['--disable-flask-log', f'{int(disable_flask_log)}']
sig_names = {2: "SIGINT", 15: "SIGTERM"}
last_return_code = None
def sigkill_handler(signum, frame):
for process in processes:
print(f"Killing subprocess {process.pid}")
try:
process.kill()
except Exception:
pass
if last_return_code is not None:
raise subprocess.CalledProcessError(returncode=last_return_code, cmd=cmd)
if signum in sig_names:
print(f"Main process received {sig_names[signum]}, exiting")
sys.exit(1)
# pass SIGINT/SIGTERM to children if the parent is being terminated
signal.signal(signal.SIGINT, sigkill_handler)
signal.signal(signal.SIGTERM, sigkill_handler)
process = subprocess.Popen(cmd, env=current_env, stdout=None, stderr=None)
processes.append(process)
try:
alive_processes = set(processes)
while len(alive_processes):
finished_processes = []
for process in alive_processes:
if process.poll() is None:
# the process is still running
continue
else:
if process.returncode != 0:
last_return_code = process.returncode # for sigkill_handler
sigkill_handler(signal.SIGTERM, None) # not coming back
else:
# exited cleanly
finished_processes.append(process)
alive_processes = set(alive_processes) - set(finished_processes)
time.sleep(1)
finally:
# close open file descriptors
pass
def dist_add_replicas(
replicas_type: str,
kubeconfig: str,
replicas: int,
coordinator_name: str,
namespace: str,
cpus: int,
gpus: int,
memory: str,
) -> None:
assert coordinator_name and namespace, "Please provide --coordinator-name or --namespace"
import json
data = {
"namespace": namespace,
"coordinator": coordinator_name,
}
res = {"replicas": replicas}
if cpus > 0:
res['cpus'] = cpus
if gpus > 0:
res['gpus'] = gpus
if memory:
res['memory'] = memory
if replicas_type == 'collector':
data['collectors'] = res
elif replicas_type == 'learner':
data['learners'] = res
cmd = 'curl -X POST $KUBERNETES_SERVER_URL/v1alpha1/replicas ' \
'-H "content-type: application/json" ' \
f'-d \'{json.dumps(data)}\''
ret, msg = pod_exec_command(kubeconfig, coordinator_name, namespace, cmd)
if ret == 0:
print(f'{replicas_type} add successfully')
else:
print(f'Failed to add {replicas_type}, return code: {ret}, message: {msg}')
def dist_delete_replicas(
replicas_type: str, kubeconfig: str, replicas: int, coordinator_name: str, namespace: str
) -> None:
assert coordinator_name and namespace, "Please provide --coordinator-name or --namespace"
import json
data = {
"namespace": namespace,
"coordinator": coordinator_name,
}
if replicas_type == 'collector':
data['collectors'] = {"replicas": replicas}
elif replicas_type == 'learner':
data['learners'] = {"replicas": replicas}
cmd = 'curl -X DELETE $KUBERNETES_SERVER_URL/v1alpha1/replicas ' \
'-H "content-type: application/json" ' \
f'-d \'{json.dumps(data)}\''
ret, msg = pod_exec_command(kubeconfig, coordinator_name, namespace, cmd)
if ret == 0:
print(f'{replicas_type} delete successfully')
else:
print(f'Failed to delete {replicas_type}, return code: {ret}, message: {msg}')
def dist_restart_replicas(
replicas_type: str, kubeconfig: str, coordinator_name: str, namespace: str, restart_pod_name: str
) -> None:
assert coordinator_name and namespace, "Please provide --coordinator-name or --namespace"
import json
data = {
"namespace": namespace,
"coordinator": coordinator_name,
}
assert restart_pod_name, "Please provide restart pod name with --restart-pod-name"
if replicas_type == 'collector':
data['collectors'] = [restart_pod_name]
elif replicas_type == 'learner':
data['learners'] = [restart_pod_name]
cmd = 'curl -X POST $KUBERNETES_SERVER_URL/v1alpha1/replicas/failed ' \
'-H "content-type: application/json" ' \
f'-d \'{json.dumps(data)}\''
ret, msg = pod_exec_command(kubeconfig, coordinator_name, namespace, cmd)
if ret == 0:
print(f'{replicas_type} restart successfully')
else:
print(f'Failed to restart {replicas_type}, return code: {ret}, message: {msg}')
|