File size: 17,848 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
from typing import Callable, Any, List, Union, Optional
from abc import ABC, abstractmethod
from collections import deque
from ditk import logging
import numpy as np
import torch
import treetensor.numpy as tnp
import treetensor.torch as ttorch
from easydict import EasyDict
from ding.envs import BaseEnvManager
from ding.framework.context import Context, OfflineRLContext, OnlineRLContext
from ding.policy import Policy
from ding.data import Dataset, DataLoader
from ding.framework import task
from ding.torch_utils import to_ndarray, get_shape0
from ding.utils import lists_to_dicts
class IMetric(ABC):
@abstractmethod
def eval(self, inputs: Any, label: Any) -> dict:
raise NotImplementedError
@abstractmethod
def reduce_mean(self, inputs: List[Any]) -> Any:
raise NotImplementedError
@abstractmethod
def gt(self, metric1: Any, metric2: Any) -> bool:
"""
Overview:
Whether metric1 is greater than metric2 (>=)
.. note::
If metric2 is None, return True
"""
raise NotImplementedError
class VectorEvalMonitor(object):
"""
Overview:
In some cases, different environment in evaluator may collect different length episode. For example, \
suppose we want to collect 12 episodes in evaluator but only have 5 environments, if we didn’t do \
any thing, it is likely that we will get more short episodes than long episodes. As a result, \
our average reward will have a bias and may not be accurate. we use VectorEvalMonitor to solve the problem.
Interfaces:
__init__, is_finished, update_info, update_reward, get_episode_return, get_latest_reward, get_current_episode,\
get_episode_info, update_video, get_episode_video
"""
def __init__(self, env_num: int, n_episode: int) -> None:
"""
Overview:
Init method. According to the number of episodes and the number of environments, determine how many \
episodes need to be opened for each environment, and initialize the reward, info and other \
information
Arguments:
- env_num (:obj:`int`): the number of episodes need to be open
- n_episode (:obj:`int`): the number of environments
"""
assert n_episode >= env_num, "n_episode < env_num, please decrease the number of eval env"
self._env_num = env_num
self._n_episode = n_episode
each_env_episode = [n_episode // env_num for _ in range(env_num)]
for i in range(n_episode % env_num):
each_env_episode[i] += 1
self._reward = {env_id: deque(maxlen=maxlen) for env_id, maxlen in enumerate(each_env_episode)}
self._info = {env_id: deque(maxlen=maxlen) for env_id, maxlen in enumerate(each_env_episode)}
self._video = {
env_id: deque([[] for _ in range(maxlen)], maxlen=maxlen)
for env_id, maxlen in enumerate(each_env_episode)
}
self._output = {
env_id: deque([[] for _ in range(maxlen)], maxlen=maxlen)
for env_id, maxlen in enumerate(each_env_episode)
}
def is_finished(self) -> bool:
"""
Overview:
Determine whether the evaluator has completed the work.
Return:
- result: (:obj:`bool`): whether the evaluator has completed the work
"""
return all([len(v) == v.maxlen for v in self._reward.values()])
def update_info(self, env_id: int, info: Any) -> None:
"""
Overview:
Update the information of the environment indicated by env_id.
Arguments:
- env_id: (:obj:`int`): the id of the environment we need to update information
- info: (:obj:`Any`): the information we need to update
"""
self._info[env_id].append(info)
def update_reward(self, env_id: Union[int, np.ndarray], reward: Any) -> None:
"""
Overview:
Update the reward indicated by env_id.
Arguments:
- env_id: (:obj:`int`): the id of the environment we need to update the reward
- reward: (:obj:`Any`): the reward we need to update
"""
if isinstance(reward, torch.Tensor):
reward = reward.item()
if isinstance(env_id, np.ndarray):
env_id = env_id.item()
self._reward[env_id].append(reward)
def get_episode_return(self) -> list:
"""
Overview:
Sum up all reward and get the total return of one episode.
"""
return sum([list(v) for v in self._reward.values()], []) # sum(iterable, start)
def get_latest_reward(self, env_id: int) -> int:
"""
Overview:
Get the latest reward of a certain environment.
Arguments:
- env_id: (:obj:`int`): the id of the environment we need to get reward.
"""
return self._reward[env_id][-1]
def get_current_episode(self) -> int:
"""
Overview:
Get the current episode. We can know which episode our evaluator is executing now.
"""
return sum([len(v) for v in self._reward.values()])
def get_episode_info(self) -> dict:
"""
Overview:
Get all episode information, such as total return of one episode.
"""
if len(self._info[0]) == 0:
return None
else:
# sum among all envs
total_info = sum([list(v) for v in self._info.values()], [])
if isinstance(total_info[0], tnp.ndarray):
total_info = [t.json() for t in total_info]
total_info = lists_to_dicts(total_info)
new_dict = {}
for k in total_info.keys():
try:
if np.isscalar(total_info[k][0].item()):
new_dict[k + '_mean'] = np.mean(total_info[k])
except: # noqa
pass
return new_dict
def _select_idx(self):
reward = [t.item() for t in self.get_episode_return()]
sortarg = np.argsort(reward)
# worst, median(s), best
if len(sortarg) == 1:
idxs = [sortarg[0]]
elif len(sortarg) == 2:
idxs = [sortarg[0], sortarg[-1]]
elif len(sortarg) == 3:
idxs = [sortarg[0], sortarg[len(sortarg) // 2], sortarg[-1]]
else:
# TensorboardX pad the number of videos to even numbers with black frames,
# therefore providing even number of videos prevents black frames being rendered.
idxs = [sortarg[0], sortarg[len(sortarg) // 2 - 1], sortarg[len(sortarg) // 2], sortarg[-1]]
return idxs
def update_video(self, imgs):
for env_id, img in imgs.items():
if len(self._reward[env_id]) == self._reward[env_id].maxlen:
continue
self._video[env_id][len(self._reward[env_id])].append(img)
def get_episode_video(self):
"""
Overview:
Convert list of videos into [N, T, C, H, W] tensor, containing
worst, median, best evaluation trajectories for video logging.
"""
videos = sum([list(v) for v in self._video.values()], [])
videos = [np.transpose(np.stack(video, 0), [0, 3, 1, 2]) for video in videos]
idxs = self._select_idx()
videos = [videos[idx] for idx in idxs]
# pad videos to the same length with last frames
max_length = max(video.shape[0] for video in videos)
for i in range(len(videos)):
if videos[i].shape[0] < max_length:
padding = np.tile([videos[i][-1]], (max_length - videos[i].shape[0], 1, 1, 1))
videos[i] = np.concatenate([videos[i], padding], 0)
videos = np.stack(videos, 0)
assert len(videos.shape) == 5, 'Need [N, T, C, H, W] input tensor for video logging!'
return videos
def update_output(self, output):
for env_id, o in output.items():
if len(self._reward[env_id]) == self._reward[env_id].maxlen:
continue
self._output[env_id][len(self._reward[env_id])].append(to_ndarray(o))
def get_episode_output(self):
output = sum([list(v) for v in self._output.values()], [])
idxs = self._select_idx()
output = [output[idx] for idx in idxs]
return output
def interaction_evaluator(cfg: EasyDict, policy: Policy, env: BaseEnvManager, render: bool = False) -> Callable:
"""
Overview:
The middleware that executes the evaluation.
Arguments:
- cfg (:obj:`EasyDict`): Config.
- policy (:obj:`Policy`): The policy to be evaluated.
- env (:obj:`BaseEnvManager`): The env for the evaluation.
- render (:obj:`bool`): Whether to render env images and policy logits.
"""
if task.router.is_active and not task.has_role(task.role.EVALUATOR):
return task.void()
env.seed(cfg.seed, dynamic_seed=False)
def _evaluate(ctx: Union["OnlineRLContext", "OfflineRLContext"]):
"""
Overview:
- The evaluation will be executed if the task begins and enough train_iter passed \
since last evaluation.
Input of ctx:
- last_eval_iter (:obj:`int`): Last evaluation iteration.
- train_iter (:obj:`int`): Current train iteration.
Output of ctx:
- eval_value (:obj:`float`): The average reward in the current evaluation.
"""
# evaluation will be executed if the task begins or enough train_iter after last evaluation
if ctx.last_eval_iter != -1 and \
(ctx.train_iter - ctx.last_eval_iter < cfg.policy.eval.evaluator.eval_freq):
return
if env.closed:
env.launch()
else:
env.reset()
policy.reset()
eval_monitor = VectorEvalMonitor(env.env_num, cfg.env.n_evaluator_episode)
while not eval_monitor.is_finished():
obs = ttorch.as_tensor(env.ready_obs).to(dtype=ttorch.float32)
obs = {i: obs[i] for i in range(get_shape0(obs))} # TBD
inference_output = policy.forward(obs)
if render:
eval_monitor.update_video(env.ready_imgs)
eval_monitor.update_output(inference_output)
output = [v for v in inference_output.values()]
action = [to_ndarray(v['action']) for v in output] # TBD
timesteps = env.step(action)
for timestep in timesteps:
env_id = timestep.env_id.item()
if timestep.done:
policy.reset([env_id])
reward = timestep.info.eval_episode_return
eval_monitor.update_reward(env_id, reward)
if 'episode_info' in timestep.info:
eval_monitor.update_info(env_id, timestep.info.episode_info)
episode_return = eval_monitor.get_episode_return()
episode_return_min = np.min(episode_return)
episode_return_max = np.max(episode_return)
episode_return_std = np.std(episode_return)
episode_return = np.mean(episode_return)
stop_flag = episode_return >= cfg.env.stop_value and ctx.train_iter > 0
if isinstance(ctx, OnlineRLContext):
logging.info(
'Evaluation: Train Iter({})\tEnv Step({})\tEpisode Return({:.3f})'.format(
ctx.train_iter, ctx.env_step, episode_return
)
)
elif isinstance(ctx, OfflineRLContext):
logging.info('Evaluation: Train Iter({})\tEval Reward({:.3f})'.format(ctx.train_iter, episode_return))
else:
raise TypeError("not supported ctx type: {}".format(type(ctx)))
ctx.last_eval_iter = ctx.train_iter
ctx.eval_value = episode_return
ctx.eval_value_min = episode_return_min
ctx.eval_value_max = episode_return_max
ctx.eval_value_std = episode_return_std
ctx.last_eval_value = ctx.eval_value
ctx.eval_output = {'episode_return': episode_return}
episode_info = eval_monitor.get_episode_info()
if episode_info is not None:
ctx.eval_output['episode_info'] = episode_info
if render:
ctx.eval_output['replay_video'] = eval_monitor.get_episode_video()
ctx.eval_output['output'] = eval_monitor.get_episode_output()
else:
ctx.eval_output['output'] = output # for compatibility
if stop_flag:
task.finish = True
return _evaluate
def interaction_evaluator_ttorch(
seed: int,
policy: Policy,
env: BaseEnvManager,
n_evaluator_episode: Optional[int] = None,
stop_value: float = np.inf,
eval_freq: int = 1000,
render: bool = False,
) -> Callable:
"""
Overview:
The middleware that executes the evaluation with ttorch data.
Arguments:
- policy (:obj:`Policy`): The policy to be evaluated.
- env (:obj:`BaseEnvManager`): The env for the evaluation.
- render (:obj:`bool`): Whether to render env images and policy logits.
"""
if task.router.is_active and not task.has_role(task.role.EVALUATOR):
return task.void()
env.seed(seed, dynamic_seed=False)
if n_evaluator_episode is None:
n_evaluator_episode = env.env_num
def _evaluate(ctx: "OnlineRLContext"):
"""
Overview:
- The evaluation will be executed if the task begins and enough train_iter passed \
since last evaluation.
Input of ctx:
- last_eval_iter (:obj:`int`): Last evaluation iteration.
- train_iter (:obj:`int`): Current train iteration.
Output of ctx:
- eval_value (:obj:`float`): The average reward in the current evaluation.
"""
# evaluation will be executed if the task begins or enough train_iter after last evaluation
if ctx.last_eval_iter != -1 and (ctx.train_iter - ctx.last_eval_iter < eval_freq):
return
if env.closed:
env.launch()
else:
env.reset()
policy.reset()
device = policy._device
eval_monitor = VectorEvalMonitor(env.env_num, n_evaluator_episode)
while not eval_monitor.is_finished():
obs = ttorch.as_tensor(env.ready_obs).to(dtype=ttorch.float32)
obs = obs.to(device)
inference_output = policy.eval(obs)
inference_output = inference_output.cpu()
if render:
eval_monitor.update_video(env.ready_imgs)
# eval_monitor.update_output(inference_output)
action = inference_output.action.numpy()
timesteps = env.step(action)
for timestep in timesteps:
env_id = timestep.env_id.item()
if timestep.done:
policy.reset([env_id])
reward = timestep.info.eval_episode_return
eval_monitor.update_reward(env_id, reward)
if 'episode_info' in timestep.info:
eval_monitor.update_info(env_id, timestep.info.episode_info)
episode_return = eval_monitor.get_episode_return()
episode_return_std = np.std(episode_return)
episode_return_mean = np.mean(episode_return)
stop_flag = episode_return_mean >= stop_value and ctx.train_iter > 0
logging.info(
'Evaluation: Train Iter({})\tEnv Step({})\tMean Episode Return({:.3f})'.format(
ctx.train_iter, ctx.env_step, episode_return_mean
)
)
ctx.last_eval_iter = ctx.train_iter
ctx.eval_value = episode_return_mean
ctx.eval_value_std = episode_return_std
ctx.last_eval_value = ctx.eval_value
ctx.eval_output = {'episode_return': episode_return}
episode_info = eval_monitor.get_episode_info()
if episode_info is not None:
ctx.eval_output['episode_info'] = episode_info
if render:
ctx.eval_output['replay_video'] = eval_monitor.get_episode_video()
ctx.eval_output['output'] = eval_monitor.get_episode_output()
else:
ctx.eval_output['output'] = inference_output.numpy() # for compatibility
if stop_flag:
task.finish = True
return _evaluate
def metric_evaluator(cfg: EasyDict, policy: Policy, dataset: Dataset, metric: IMetric) -> Callable:
dataloader = DataLoader(dataset, batch_size=cfg.policy.eval.batch_size)
def _evaluate(ctx: "Context"):
# evaluation will be executed if the task begins or enough train_iter after last evaluation
if ctx.last_eval_iter != -1 and \
(ctx.train_iter - ctx.last_eval_iter < cfg.policy.eval.evaluator.eval_freq):
return
policy.reset()
eval_output = []
for batch_idx, batch_data in enumerate(dataloader):
inputs, label = batch_data
inference_output = policy.forward(inputs)
eval_output.append(metric.eval(inference_output, label))
# TODO reduce avg_eval_output among different gpus
avg_eval_output = metric.reduce_mean(eval_output)
stop_flag = metric.gt(avg_eval_output, cfg.env.stop_value) and ctx.train_iter > 0
logging.info(
'Evaluation: Train Iter({})\tEnv Step({})\tEpisode Return({:.3f})'.format(
ctx.train_iter, ctx.env_step, avg_eval_output
)
)
ctx.last_eval_iter = ctx.train_iter
ctx.eval_value = avg_eval_output
if stop_flag:
task.finish = True
return _evaluate
# TODO battle evaluator
|