File size: 10,981 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from typing import Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import reduce
from ding.utils import list_split, MODEL_REGISTRY
from ding.torch_utils import fc_block, MLP
from .q_learning import DRQN
class Mixer(nn.Module):
"""
Overview:
Mixer network in QMIX, which mix up the independent q_value of each agent to a total q_value. \
The weights (but not the biases) of the Mixer network are restricted to be non-negative and \
produced by separate hypernetworks. Each hypernetwork takes the globle state s as input and generates \
the weights of one layer of the Mixer network.
Interface:
``__init__``, ``forward``.
"""
def __init__(
self,
agent_num: int,
state_dim: int,
mixing_embed_dim: int,
hypernet_embed: int = 64,
activation: nn.Module = nn.ReLU()
):
"""
Overview:
Initialize mixer network proposed in QMIX according to arguments. Each hypernetwork consists of \
linear layers, followed by an absolute activation function, to ensure that the Mixer network weights are \
non-negative.
Arguments:
- agent_num (:obj:`int`): The number of agent, such as 8.
- state_dim(:obj:`int`): The dimension of global observation state, such as 16.
- mixing_embed_dim (:obj:`int`): The dimension of mixing state emdedding, such as 128.
- hypernet_embed (:obj:`int`): The dimension of hypernet emdedding, default to 64.
- activation (:obj:`nn.Module`): Activation function in network, defaults to nn.ReLU().
"""
super(Mixer, self).__init__()
self.n_agents = agent_num
self.state_dim = state_dim
self.embed_dim = mixing_embed_dim
self.act = activation
self.hyper_w_1 = nn.Sequential(
nn.Linear(self.state_dim, hypernet_embed), self.act,
nn.Linear(hypernet_embed, self.embed_dim * self.n_agents)
)
self.hyper_w_final = nn.Sequential(
nn.Linear(self.state_dim, hypernet_embed), self.act, nn.Linear(hypernet_embed, self.embed_dim)
)
# state dependent bias for hidden layer
self.hyper_b_1 = nn.Linear(self.state_dim, self.embed_dim)
# V(s) instead of a bias for the last layers
self.V = nn.Sequential(nn.Linear(self.state_dim, self.embed_dim), self.act, nn.Linear(self.embed_dim, 1))
def forward(self, agent_qs, states):
"""
Overview:
Forward computation graph of pymarl mixer network. Mix up the input independent q_value of each agent \
to a total q_value with weights generated by hypernetwork according to global ``states``.
Arguments:
- agent_qs (:obj:`torch.FloatTensor`): The independent q_value of each agent.
- states (:obj:`torch.FloatTensor`): The emdedding vector of global state.
Returns:
- q_tot (:obj:`torch.FloatTensor`): The total mixed q_value.
Shapes:
- agent_qs (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is agent_num.
- states (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is embedding_size.
- q_tot (:obj:`torch.FloatTensor`): :math:`(B, )`.
"""
bs = agent_qs.shape[:-1]
states = states.reshape(-1, self.state_dim)
agent_qs = agent_qs.view(-1, 1, self.n_agents)
# First layer
w1 = torch.abs(self.hyper_w_1(states))
b1 = self.hyper_b_1(states)
w1 = w1.view(-1, self.n_agents, self.embed_dim)
b1 = b1.view(-1, 1, self.embed_dim)
hidden = F.elu(torch.bmm(agent_qs, w1) + b1)
# Second layer
w_final = torch.abs(self.hyper_w_final(states))
w_final = w_final.view(-1, self.embed_dim, 1)
# State-dependent bias
v = self.V(states).view(-1, 1, 1)
# Compute final output
y = torch.bmm(hidden, w_final) + v
# Reshape and return
q_tot = y.view(*bs)
return q_tot
@MODEL_REGISTRY.register('qmix')
class QMix(nn.Module):
"""
Overview:
The neural network and computation graph of algorithms related to QMIX(https://arxiv.org/abs/1803.11485). \
The QMIX is composed of two parts: agent Q network and mixer(optional). The QMIX paper mentions that all \
agents share local Q network parameters, so only one Q network is initialized here. Then use summation or \
Mixer network to process the local Q according to the ``mixer`` settings to obtain the global Q.
Interface:
``__init__``, ``forward``.
"""
def __init__(
self,
agent_num: int,
obs_shape: int,
global_obs_shape: int,
action_shape: int,
hidden_size_list: list,
mixer: bool = True,
lstm_type: str = 'gru',
activation: nn.Module = nn.ReLU(),
dueling: bool = False
) -> None:
"""
Overview:
Initialize QMIX neural network according to arguments, i.e. agent Q network and mixer.
Arguments:
- agent_num (:obj:`int`): The number of agent, such as 8.
- obs_shape (:obj:`int`): The dimension of each agent's observation state, such as 8 or [4, 84, 84].
- global_obs_shape (:obj:`int`): The dimension of global observation state, such as 8 or [4, 84, 84].
- action_shape (:obj:`int`): The dimension of action shape, such as 6 or [2, 3, 3].
- hidden_size_list (:obj:`list`): The list of hidden size for ``q_network``, \
the last element must match mixer's ``mixing_embed_dim``.
- mixer (:obj:`bool`): Use mixer net or not, default to True. If it is false, \
the final local Q is added to obtain the global Q.
- lstm_type (:obj:`str`): The type of RNN module in ``q_network``, now support \
['normal', 'pytorch', 'gru'], default to gru.
- activation (:obj:`nn.Module`): The type of activation function to use in ``MLP`` the after \
``layer_fn``, if ``None`` then default set to ``nn.ReLU()``.
- dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \
default to False.
"""
super(QMix, self).__init__()
self._act = activation
self._q_network = DRQN(
obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation
)
embedding_size = hidden_size_list[-1]
self.mixer = mixer
if self.mixer:
self._mixer = Mixer(agent_num, global_obs_shape, embedding_size, activation=activation)
self._global_state_encoder = nn.Identity()
def forward(self, data: dict, single_step: bool = True) -> dict:
"""
Overview:
QMIX forward computation graph, input dict including time series observation and related data to predict \
total q_value and each agent q_value.
Arguments:
- data (:obj:`dict`): Input data dict with keys ['obs', 'prev_state', 'action'].
- agent_state (:obj:`torch.Tensor`): Time series local observation data of each agents.
- global_state (:obj:`torch.Tensor`): Time series global observation data.
- prev_state (:obj:`list`): Previous rnn state for ``q_network``.
- action (:obj:`torch.Tensor` or None): The actions of each agent given outside the function. \
If action is None, use argmax q_value index as action to calculate ``agent_q_act``.
- single_step (:obj:`bool`): Whether single_step forward, if so, add timestep dim before forward and\
remove it after forward.
Returns:
- ret (:obj:`dict`): Output data dict with keys [``total_q``, ``logit``, ``next_state``].
ReturnsKeys:
- total_q (:obj:`torch.Tensor`): Total q_value, which is the result of mixer network.
- agent_q (:obj:`torch.Tensor`): Each agent q_value.
- next_state (:obj:`list`): Next rnn state for ``q_network``.
Shapes:
- agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\
A is agent_num, N is obs_shape.
- global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape.
- prev_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A.
- action (:obj:`torch.Tensor`): :math:`(T, B, A)`.
- total_q (:obj:`torch.Tensor`): :math:`(T, B)`.
- agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape.
- next_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A.
"""
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[
'prev_state']
action = data.get('action', None)
if single_step:
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0)
T, B, A = agent_state.shape[:3]
assert len(prev_state) == B and all(
[len(p) == A for p in prev_state]
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0]))
prev_state = reduce(lambda x, y: x + y, prev_state)
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:])
output = self._q_network({'obs': agent_state, 'prev_state': prev_state, 'enable_fast_timestep': True})
agent_q, next_state = output['logit'], output['next_state']
next_state, _ = list_split(next_state, step=A)
agent_q = agent_q.reshape(T, B, A, -1)
if action is None:
# for target forward process
if len(data['obs']['action_mask'].shape) == 3:
action_mask = data['obs']['action_mask'].unsqueeze(0)
else:
action_mask = data['obs']['action_mask']
agent_q[action_mask == 0.0] = -9999999
action = agent_q.argmax(dim=-1)
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1))
agent_q_act = agent_q_act.squeeze(-1) # T, B, A
if self.mixer:
global_state_embedding = self._global_state_encoder(global_state)
total_q = self._mixer(agent_q_act, global_state_embedding)
else:
total_q = agent_q_act.sum(-1)
if single_step:
total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0)
return {
'total_q': total_q,
'logit': agent_q,
'next_state': next_state,
'action_mask': data['obs']['action_mask']
}
|