File size: 10,981 Bytes
079c32c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from typing import Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import reduce
from ding.utils import list_split, MODEL_REGISTRY
from ding.torch_utils import fc_block, MLP
from .q_learning import DRQN


class Mixer(nn.Module):
    """
    Overview:
        Mixer network in QMIX, which mix up the independent q_value of each agent to a total q_value. \
        The weights (but not the biases) of the Mixer network are restricted to be non-negative and \
        produced by separate hypernetworks. Each hypernetwork takes the globle state s as input and generates \
        the weights of one layer of the Mixer network.
    Interface:
        ``__init__``, ``forward``.
    """

    def __init__(
        self,
        agent_num: int,
        state_dim: int,
        mixing_embed_dim: int,
        hypernet_embed: int = 64,
        activation: nn.Module = nn.ReLU()
    ):
        """
        Overview:
            Initialize mixer network proposed in QMIX according to arguments. Each hypernetwork consists of \
            linear layers, followed by an absolute activation function, to ensure that the Mixer network weights are \
            non-negative.
        Arguments:
            - agent_num (:obj:`int`): The number of agent, such as 8.
            - state_dim(:obj:`int`): The dimension of global observation state, such as 16.
            - mixing_embed_dim (:obj:`int`): The dimension of mixing state emdedding, such as 128.
            - hypernet_embed (:obj:`int`): The dimension of hypernet emdedding, default to 64.
            - activation (:obj:`nn.Module`): Activation function in network, defaults to nn.ReLU().
        """
        super(Mixer, self).__init__()

        self.n_agents = agent_num
        self.state_dim = state_dim
        self.embed_dim = mixing_embed_dim
        self.act = activation
        self.hyper_w_1 = nn.Sequential(
            nn.Linear(self.state_dim, hypernet_embed), self.act,
            nn.Linear(hypernet_embed, self.embed_dim * self.n_agents)
        )
        self.hyper_w_final = nn.Sequential(
            nn.Linear(self.state_dim, hypernet_embed), self.act, nn.Linear(hypernet_embed, self.embed_dim)
        )

        # state dependent bias for hidden layer
        self.hyper_b_1 = nn.Linear(self.state_dim, self.embed_dim)

        # V(s) instead of a bias for the last layers
        self.V = nn.Sequential(nn.Linear(self.state_dim, self.embed_dim), self.act, nn.Linear(self.embed_dim, 1))

    def forward(self, agent_qs, states):
        """
        Overview:
            Forward computation graph of pymarl mixer network. Mix up the input independent q_value of each agent \
            to a total q_value with weights generated by hypernetwork according to global ``states``.
        Arguments:
            - agent_qs (:obj:`torch.FloatTensor`): The independent q_value of each agent.
            - states (:obj:`torch.FloatTensor`): The emdedding vector of global state.
        Returns:
            - q_tot (:obj:`torch.FloatTensor`): The total mixed q_value.
        Shapes:
            - agent_qs (:obj:`torch.FloatTensor`): :math:`(B, N)`, where B is batch size and N is agent_num.
            - states (:obj:`torch.FloatTensor`): :math:`(B, M)`, where M is embedding_size.
            - q_tot (:obj:`torch.FloatTensor`): :math:`(B, )`.
        """
        bs = agent_qs.shape[:-1]
        states = states.reshape(-1, self.state_dim)
        agent_qs = agent_qs.view(-1, 1, self.n_agents)
        # First layer
        w1 = torch.abs(self.hyper_w_1(states))
        b1 = self.hyper_b_1(states)
        w1 = w1.view(-1, self.n_agents, self.embed_dim)
        b1 = b1.view(-1, 1, self.embed_dim)
        hidden = F.elu(torch.bmm(agent_qs, w1) + b1)
        # Second layer
        w_final = torch.abs(self.hyper_w_final(states))
        w_final = w_final.view(-1, self.embed_dim, 1)
        # State-dependent bias
        v = self.V(states).view(-1, 1, 1)
        # Compute final output
        y = torch.bmm(hidden, w_final) + v
        # Reshape and return
        q_tot = y.view(*bs)
        return q_tot


@MODEL_REGISTRY.register('qmix')
class QMix(nn.Module):
    """
    Overview:
        The neural network and computation graph of algorithms related to QMIX(https://arxiv.org/abs/1803.11485). \
        The QMIX is composed of two parts: agent Q network and mixer(optional). The QMIX paper mentions that all \
        agents share local Q network parameters, so only one Q network is initialized here. Then use summation or \
        Mixer network to process the local Q according to the ``mixer`` settings to obtain the global Q.
    Interface:
        ``__init__``, ``forward``.
    """

    def __init__(
            self,
            agent_num: int,
            obs_shape: int,
            global_obs_shape: int,
            action_shape: int,
            hidden_size_list: list,
            mixer: bool = True,
            lstm_type: str = 'gru',
            activation: nn.Module = nn.ReLU(),
            dueling: bool = False
    ) -> None:
        """
        Overview:
            Initialize QMIX neural network according to arguments, i.e. agent Q network and mixer.
        Arguments:
            - agent_num (:obj:`int`): The number of agent, such as 8.
            - obs_shape (:obj:`int`): The dimension of each agent's observation state, such as 8 or [4, 84, 84].
            - global_obs_shape (:obj:`int`): The dimension of global observation state, such as 8 or [4, 84, 84].
            - action_shape (:obj:`int`): The dimension of action shape, such as 6 or [2, 3, 3].
            - hidden_size_list (:obj:`list`): The list of hidden size for ``q_network``, \
                the last element must match mixer's ``mixing_embed_dim``.
            - mixer (:obj:`bool`): Use mixer net or not, default to True. If it is false, \
                the final local Q is added to obtain the global Q.
            - lstm_type (:obj:`str`): The type of RNN module in ``q_network``, now support \
                ['normal', 'pytorch', 'gru'], default to gru.
            - activation (:obj:`nn.Module`): The type of activation function to use in ``MLP`` the after \
                ``layer_fn``, if ``None`` then default set to ``nn.ReLU()``.
            - dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \
                default to False.
        """
        super(QMix, self).__init__()
        self._act = activation
        self._q_network = DRQN(
            obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling, activation=activation
        )
        embedding_size = hidden_size_list[-1]
        self.mixer = mixer
        if self.mixer:
            self._mixer = Mixer(agent_num, global_obs_shape, embedding_size, activation=activation)
            self._global_state_encoder = nn.Identity()

    def forward(self, data: dict, single_step: bool = True) -> dict:
        """
        Overview:
            QMIX forward computation graph, input dict including time series observation and related data to predict \
            total q_value and each agent q_value.
        Arguments:
            - data (:obj:`dict`): Input data dict with keys ['obs', 'prev_state', 'action'].
                - agent_state (:obj:`torch.Tensor`): Time series local observation data of each agents.
                - global_state (:obj:`torch.Tensor`): Time series global observation data.
                - prev_state (:obj:`list`): Previous rnn state for ``q_network``.
                - action (:obj:`torch.Tensor` or None): The actions of each agent given outside the function. \
                    If action is None, use argmax q_value index as action to calculate ``agent_q_act``.
            - single_step (:obj:`bool`): Whether single_step forward, if so, add timestep dim before forward and\
                remove it after forward.
        Returns:
            - ret (:obj:`dict`): Output data dict with keys [``total_q``, ``logit``, ``next_state``].
        ReturnsKeys:
            - total_q (:obj:`torch.Tensor`): Total q_value, which is the result of mixer network.
            - agent_q (:obj:`torch.Tensor`): Each agent q_value.
            - next_state (:obj:`list`): Next rnn state for ``q_network``.
        Shapes:
            - agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\
                A is agent_num, N is obs_shape.
            - global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape.
            - prev_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A.
            - action (:obj:`torch.Tensor`): :math:`(T, B, A)`.
            - total_q (:obj:`torch.Tensor`): :math:`(T, B)`.
            - agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape.
            - next_state (:obj:`list`): math:`(B, A)`, a list of length B, and each element is a list of length A.
        """
        agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[
            'prev_state']
        action = data.get('action', None)
        if single_step:
            agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0)
        T, B, A = agent_state.shape[:3]
        assert len(prev_state) == B and all(
            [len(p) == A for p in prev_state]
        ), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0]))
        prev_state = reduce(lambda x, y: x + y, prev_state)
        agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:])
        output = self._q_network({'obs': agent_state, 'prev_state': prev_state, 'enable_fast_timestep': True})
        agent_q, next_state = output['logit'], output['next_state']
        next_state, _ = list_split(next_state, step=A)
        agent_q = agent_q.reshape(T, B, A, -1)
        if action is None:
            # for target forward process
            if len(data['obs']['action_mask'].shape) == 3:
                action_mask = data['obs']['action_mask'].unsqueeze(0)
            else:
                action_mask = data['obs']['action_mask']
            agent_q[action_mask == 0.0] = -9999999
            action = agent_q.argmax(dim=-1)
        agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1))
        agent_q_act = agent_q_act.squeeze(-1)  # T, B, A
        if self.mixer:
            global_state_embedding = self._global_state_encoder(global_state)
            total_q = self._mixer(agent_q_act, global_state_embedding)
        else:
            total_q = agent_q_act.sum(-1)
        if single_step:
            total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0)
        return {
            'total_q': total_q,
            'logit': agent_q,
            'next_state': next_state,
            'action_mask': data['obs']['action_mask']
        }