File size: 13,595 Bytes
079c32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
from typing import Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import reduce
from ding.utils import list_split, MODEL_REGISTRY
from ding.torch_utils.network.nn_module import fc_block, MLP
from ding.torch_utils.network.transformer import ScaledDotProductAttention
from .q_learning import DRQN
from ding.model.template.qmix import Mixer
class MixerStar(nn.Module):
"""
Overview:
Mixer network for Q_star in WQMIX(https://arxiv.org/abs/2006.10800), which mix up the independent q_value of \
each agent to a total q_value and is diffrent from the QMIX's mixer network, \
here the mixing network is a feedforward network with 3 hidden layers of 256 dim. \
This Q_star mixing network is not constrained to be monotonic by using non-negative weights and \
having the state and agent_q be inputs, as opposed to having hypernetworks take the state as input \
and generate the weights in QMIX.
Interface:
``__init__``, ``forward``.
"""
def __init__(self, agent_num: int, state_dim: int, mixing_embed_dim: int) -> None:
"""
Overview:
Initialize the mixer network of Q_star in WQMIX.
Arguments:
- agent_num (:obj:`int`): The number of agent, e.g., 8.
- state_dim(:obj:`int`): The dimension of global observation state, e.g., 16.
- mixing_embed_dim (:obj:`int`): The dimension of mixing state emdedding, e.g., 128.
"""
super(MixerStar, self).__init__()
self.agent_num = agent_num
self.state_dim = state_dim
self.embed_dim = mixing_embed_dim
self.input_dim = self.agent_num + self.state_dim # shape N+A
non_lin = nn.ReLU()
self.net = nn.Sequential(
nn.Linear(self.input_dim, self.embed_dim), non_lin, nn.Linear(self.embed_dim, self.embed_dim), non_lin,
nn.Linear(self.embed_dim, self.embed_dim), non_lin, nn.Linear(self.embed_dim, 1)
)
# V(s) instead of a bias for the last layers
self.V = nn.Sequential(nn.Linear(self.state_dim, self.embed_dim), non_lin, nn.Linear(self.embed_dim, 1))
def forward(self, agent_qs: torch.FloatTensor, states: torch.FloatTensor) -> torch.FloatTensor:
"""
Overview:
Forward computation graph of the mixer network for Q_star in WQMIX. This mixer network for \
is a feed-forward network that takes the state and the appropriate actions' utilities as input.
Arguments:
- agent_qs (:obj:`torch.FloatTensor`): The independent q_value of each agent.
- states (:obj:`torch.FloatTensor`): The emdedding vector of global state.
Returns:
- q_tot (:obj:`torch.FloatTensor`): The total mixed q_value.
Shapes:
- agent_qs (:obj:`torch.FloatTensor`): :math:`(T,B, N)`, where T is timestep, \
B is batch size, A is agent_num, N is obs_shape.
- states (:obj:`torch.FloatTensor`): :math:`(T, B, M)`, where M is global_obs_shape.
- q_tot (:obj:`torch.FloatTensor`): :math:`(T, B, )`.
"""
# in below annotations about the shape of the variables, T is timestep,
# B is batch_size A is agent_num, N is obs_shape, for example,
# in 3s5z, we can set T=10, B=32, A=8, N=216
bs = agent_qs.shape[:-1] # (T*B, A)
states = states.reshape(-1, self.state_dim) # T*B, N),
agent_qs = agent_qs.reshape(-1, self.agent_num) # (T, B, A) -> (T*B, A)
inputs = torch.cat([states, agent_qs], dim=1) # (T*B, N) (T*B, A)-> (T*B, N+A)
advs = self.net(inputs) # (T*B, 1)
vs = self.V(states) # (T*B, 1)
y = advs + vs
q_tot = y.view(*bs) # (T*B, 1) -> (T, B)
return q_tot
@MODEL_REGISTRY.register('wqmix')
class WQMix(nn.Module):
"""
Overview:
WQMIX (https://arxiv.org/abs/2006.10800) network, There are two components: \
1) Q_tot, which is same as QMIX network and composed of agent Q network and mixer network. \
2) An unrestricted joint action Q_star, which is composed of agent Q network and mixer_star network. \
The QMIX paper mentions that all agents share local Q network parameters, so only one Q network is initialized \
in Q_tot or Q_star.
Interface:
``__init__``, ``forward``.
"""
def __init__(
self,
agent_num: int,
obs_shape: int,
global_obs_shape: int,
action_shape: int,
hidden_size_list: list,
lstm_type: str = 'gru',
dueling: bool = False
) -> None:
"""
Overview:
Initialize WQMIX neural network according to arguments, i.e. agent Q network and mixer, \
Q_star network and mixer_star.
Arguments:
- agent_num (:obj:`int`): The number of agent, such as 8.
- obs_shape (:obj:`int`): The dimension of each agent's observation state, such as 8.
- global_obs_shape (:obj:`int`): The dimension of global observation state, such as 8.
- action_shape (:obj:`int`): The dimension of action shape, such as 6.
- hidden_size_list (:obj:`list`): The list of hidden size for ``q_network``, \
the last element must match mixer's ``mixing_embed_dim``.
- lstm_type (:obj:`str`): The type of RNN module in ``q_network``, now support \
['normal', 'pytorch', 'gru'], default to gru.
- dueling (:obj:`bool`): Whether choose ``DuelingHead`` (True) or ``DiscreteHead (False)``, \
default to False.
"""
super(WQMix, self).__init__()
self._act = nn.ReLU()
self._q_network = DRQN(obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling)
self._q_network_star = DRQN(obs_shape, action_shape, hidden_size_list, lstm_type=lstm_type, dueling=dueling)
embedding_size = hidden_size_list[-1]
self._mixer = Mixer(agent_num, global_obs_shape, mixing_embed_dim=embedding_size)
self._mixer_star = MixerStar(
agent_num, global_obs_shape, mixing_embed_dim=256
) # the mixing network of Q_star is a feedforward network with 3 hidden layers of 256 dim
self._global_state_encoder = nn.Identity() # nn.Sequential()
def forward(self, data: dict, single_step: bool = True, q_star: bool = False) -> dict:
"""
Overview:
Forward computation graph of qmix network. Input dict including time series observation and \
related data to predict total q_value and each agent q_value. Determine whether to calculate \
Q_tot or Q_star based on the ``q_star`` parameter.
Arguments:
- data (:obj:`dict`): Input data dict with keys ['obs', 'prev_state', 'action'].
- agent_state (:obj:`torch.Tensor`): Time series local observation data of each agents.
- global_state (:obj:`torch.Tensor`): Time series global observation data.
- prev_state (:obj:`list`): Previous rnn state for ``q_network`` or ``_q_network_star``.
- action (:obj:`torch.Tensor` or None): If action is None, use argmax q_value index as action to\
calculate ``agent_q_act``.
- single_step (:obj:`bool`): Whether single_step forward, if so, add timestep dim before forward and\
remove it after forward.
- Q_star (:obj:`bool`): Whether Q_star network forward. If True, using the Q_star network, where the\
agent networks have the same architecture as Q network but do not share parameters and the mixing\
network is a feedforward network with 3 hidden layers of 256 dim; if False, using the Q network,\
same as the Q network in Qmix paper.
Returns:
- ret (:obj:`dict`): Output data dict with keys [``total_q``, ``logit``, ``next_state``].
- total_q (:obj:`torch.Tensor`): Total q_value, which is the result of mixer network.
- agent_q (:obj:`torch.Tensor`): Each agent q_value.
- next_state (:obj:`list`): Next rnn state.
Shapes:
- agent_state (:obj:`torch.Tensor`): :math:`(T, B, A, N)`, where T is timestep, B is batch_size\
A is agent_num, N is obs_shape.
- global_state (:obj:`torch.Tensor`): :math:`(T, B, M)`, where M is global_obs_shape.
- prev_state (:obj:`list`): math:`(T, B, A)`, a list of length B, and each element is a list of length A.
- action (:obj:`torch.Tensor`): :math:`(T, B, A)`.
- total_q (:obj:`torch.Tensor`): :math:`(T, B)`.
- agent_q (:obj:`torch.Tensor`): :math:`(T, B, A, P)`, where P is action_shape.
- next_state (:obj:`list`): math:`(T, B, A)`, a list of length B, and each element is a list of length A.
"""
if q_star: # forward using Q_star network
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[
'prev_state']
action = data.get('action', None)
if single_step:
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0)
T, B, A = agent_state.shape[:3]
assert len(prev_state) == B and all(
[len(p) == A for p in prev_state]
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0]))
prev_state = reduce(lambda x, y: x + y, prev_state)
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:])
output = self._q_network_star(
{
'obs': agent_state,
'prev_state': prev_state,
'enable_fast_timestep': True
}
) # here is the forward pass of the agent networks of Q_star
agent_q, next_state = output['logit'], output['next_state']
next_state, _ = list_split(next_state, step=A)
agent_q = agent_q.reshape(T, B, A, -1)
if action is None:
# For target forward process
if len(data['obs']['action_mask'].shape) == 3:
action_mask = data['obs']['action_mask'].unsqueeze(0)
else:
action_mask = data['obs']['action_mask']
agent_q[action_mask == 0.0] = -9999999
action = agent_q.argmax(dim=-1)
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1))
agent_q_act = agent_q_act.squeeze(-1) # T, B, A
global_state_embedding = self._global_state_encoder(global_state)
total_q = self._mixer_star(
agent_q_act, global_state_embedding
) # here is the forward pass of the mixer networks of Q_star
if single_step:
total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0)
return {
'total_q': total_q,
'logit': agent_q,
'next_state': next_state,
'action_mask': data['obs']['action_mask']
}
else: # forward using Q network
agent_state, global_state, prev_state = data['obs']['agent_state'], data['obs']['global_state'], data[
'prev_state']
action = data.get('action', None)
if single_step:
agent_state, global_state = agent_state.unsqueeze(0), global_state.unsqueeze(0)
T, B, A = agent_state.shape[:3]
assert len(prev_state) == B and all(
[len(p) == A for p in prev_state]
), '{}-{}-{}-{}'.format([type(p) for p in prev_state], B, A, len(prev_state[0]))
prev_state = reduce(lambda x, y: x + y, prev_state)
agent_state = agent_state.reshape(T, -1, *agent_state.shape[3:])
output = self._q_network(
{
'obs': agent_state,
'prev_state': prev_state,
'enable_fast_timestep': True
}
) # here is the forward pass of the agent networks of Q
agent_q, next_state = output['logit'], output['next_state']
next_state, _ = list_split(next_state, step=A)
agent_q = agent_q.reshape(T, B, A, -1)
if action is None:
# For target forward process
if len(data['obs']['action_mask'].shape) == 3:
action_mask = data['obs']['action_mask'].unsqueeze(0)
else:
action_mask = data['obs']['action_mask']
agent_q[action_mask == 0.0] = -9999999
action = agent_q.argmax(dim=-1)
agent_q_act = torch.gather(agent_q, dim=-1, index=action.unsqueeze(-1))
agent_q_act = agent_q_act.squeeze(-1) # T, B, A
global_state_embedding = self._global_state_encoder(global_state)
total_q = self._mixer(
agent_q_act, global_state_embedding
) # here is the forward pass of the mixer networks of Q
if single_step:
total_q, agent_q = total_q.squeeze(0), agent_q.squeeze(0)
return {
'total_q': total_q,
'logit': agent_q,
'next_state': next_state,
'action_mask': data['obs']['action_mask']
}
|